📄 gen_chmm.m
字号:
%==================================================================
% Generate continuous density hidden Markov model (HMM).
%
% Training parameters are defined as:
%
% (1) Par.Size : number of Gaussian mixtures in each state
% (2) Par.MaxIter : maximum iterations
% (3) Par.RandSeed : random seed
% (4) Par.NState : number of states
% (5) Par.Conf : model structure,
%
% For example, 3 states left-to-right model,
% Par.Conf = [1, 1, 0; 0, 1, 1; 0, 0, 1];
%
%
% Usage: Model = Gen_CHMM(Data, Par);
%
% Example:
%
% suppose Data(1).Mat, Data(2).Mat, ...., contain training data,
%
% MyPar.Size = 8;
% MyPar.MaxIter = 20;
% MyPar.RandSeed = 1973;
% MyPar.NState = 3;
% MyPar.Conf = [1, 1, 1; 1, 1, 1; 1, 1, 1];
%
% HMM = Gen_CHMM(Data, MyPar);
%
% HMM.Tran : transition matrix.
% HMM.MeanMat : mixture mean vectors.
% HMM.VariMat : mixture variance vectors.
% HMM.WgtMat : mixture weight.
%------------------------------------------------------------------
% Author : Jialong HE
% Date : June 25, 1999
%==================================================================
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -