📄 opt_d4.m
字号:
function [Ab] = opt(ts,N,Nc,beta,gen)
%
% Post_Doctorate
% Copyright(c) by Leandro Nunes de Castro
% October, 2001
% Artificial Immune Network (aiNet) for Multi-Modal Optimization - Description in ???????
% Particularly developed for 2-D functions f(x,y)
%% Data normalization over [0,1] required
%% Internal functions: CLONE, SUPPRESS, VER_EQ, EXTRACT, PLOTVET1, DRAW_NET, NORMA
%
% function [M] = opt(ts,N,Nc,beta,gen)
% M -> matrix of memory cells
% ts -> suppression threshold
% N -> clone number multiplier
% Nc -> no. of clones to be generated
% beta -> decay of the inverse exponential function
% gen -> maximum number of generations
%
% Function to be Optimized
%cos((6./(100^.75)).*pi.*(abs(x).^3/4))
% f = '1.*(exp(abs(x)/50).*(1-cos((6./(100^.75)).*pi.*(abs(x).^3/4))) + exp(-abs(y)./250).*(1-cos((6./(100^.75)).*pi.*(abs(y).^3/4))) + 2.* (exp(((78.4197-x).^2+(78.4197-y).^2)./50)))';
% f = '0.5 + ((sin(sqrt(x.^2+y.^2)).^2-0.5)./(1+0.001.*(x.^2+y.^2)).^2)';
f = '0.5 - ((sin(sqrt(x.^2+y.^2)).^2-0.5)./(1+0.001.*(x.^2+y.^2)).^2)';
% Parameters for Ploting the Affinity Landscape
xmin = -10; xmax = 10; ymin = -10; ymax = 10;
[x,y] = meshgrid(xmin:.2:xmax,ymin:.2:ymax); vxp = x; vyp = y;
vzp = eval(f);
% x = xmin:.1:xmax; y = zeros(1,length(x)); z = eval(f); figure(2); plot(x,z); % pause;
% Initial Random Population Within the Intervals (xmin/xmax; ymin/ymax)
Ab1 = xmin + rand(N,1).*(xmax - xmin);
Ab2 = ymin + rand(N,1).*(ymax - ymin);
Ab = [Ab1,Ab2];
x = Ab(:,1); y = Ab(:,2);
fit = eval(f);
figure(1); imprime(1,vxp,vyp,vzp,x,y,fit,1,1); title('Initial Population'); % pause
disp('Press any key to continue...'); pause;
it = 0; Nold = N + 1; Nsup = N;
FLAG = 0; FLAGERROR = 0;
avfitold = mean(fit); avfit = avfitold-1;
vout = []; vavfit = []; vN = [];
% Main Loop
while it < gen & FLAG == 0,
% Reproduction (Cloning), Affinity Maturation, and Selection Within Each Clone
[Ab] = clone_mut_select(Ab,Nc,beta,norma(fit),xmin,xmax,ymin,ymax,f);
% Immune Network Interactions After a Number of Iterations
if rem(it,5) == 0,
if abs(1-avfitold/avfit) < .001,
[Ab] = suppress(Ab,ts);
FLAGERROR = 1;
Nsupold = Nsup; Nsup = size(Ab,1); vN = [vN,Nsup];
% Convergence Criterion
if (Nsupold-Nsup) == 0, % & rem(it,20) == 0,
FLAG = 1; FLAGERROR = 0;
end;
end;
end;
% Insert randomly generated individuals
if FLAGERROR == 1,
d = round(.4*N);
Ab1 = xmin + rand(d,1).*(xmax - xmin);
Ab2 = ymin + rand(d,1).*(ymax - ymin);
Ab = [Ab;Ab1,Ab2];
FLAGERROR = 0;
end;
% Evaluating Fitness
x = Ab(:,1); y = Ab(:,2);
fit = eval(f); avfitold = avfit;
[out,I] = max(fit); avfit = mean(fit);
% Ploting Results
imprime(1,vxp,vyp,vzp,x,y,fit,it,10);
N = size(Ab,1);
it = it + 1; vout = [vout,out]; vavfit = [vavfit,avfit]; % vN = [vN,N];
disp(sprintf('It: %d Max: %f Av: %f Net size: %d',it,out,avfit,N));
end;
imprime(1,vxp,vyp,vzp,x,y,fit,1,1);
figure(2); plot(vout); hold on; plot(vavfit,'-.'); title('Fitness'); hold off;
figure(3); plot(vN); title('N');
% ------------------- %
% SECONDARY FUNCTIONS %
% ------------------- %
function [C] = clone_mut_select(Ab,Nc,beta,fitin,xmin,xmax,ymin,ymax,f);
% C -> matrix of clones
% g -> vector with Gaussian mutation
% Ab -> matrix of antibodies
% N -> cardinality of Ab
% Nc -> number of clones for each candidate
[N,L] = size(Ab);
C = [];
for i=1:N,
vones = ones(Nc,1);
Cc = vones * Ab(i,:);
% g = (randn(Nc,L)./beta) .* exp(-beta.*fitin(i));
g = (randn(Nc,L)./beta) .* exp(-fitin(i));
g(1,:) = zeros(1,L); % Keep one previous individual for each clone unmutated
c = Cc + g;
% Keeps all elements of the population within the allowed bounds
Ixmin = find(c(:,1) < xmin); Ixmax = find(c(:,1) > xmax);
Iymin = find(c(:,2) < ymin); Iymax = find(c(:,2) > ymax);
if ~isempty(Ixmin),
c(Ixmin,1) = Cc(length(Ixmin),1);
end;
if ~isempty(Ixmax),
c(Ixmax,1) = Cc(length(Ixmax),1);
end;
if ~isempty(Iymin),
c(Iymin,2) = Cc(length(Iymin),2);
end;
if ~isempty(Iymax),
c(Iymax,2) = Cc(length(Iymax),2);
end;
x = c(:,1); y = c(:,2);
fit = eval(f);
[out,I] = max(fit);
C = [C;c(I,:)]; % C contains only the best individuals of each clone
end;
% Function suppress self-recognizing and non-stimulated Ab from Memory (M)
function [M] = suppress(M,ts);
% M -> memory matrix
% D1 -> idiotypic affinity matrix
D1 = dist(M,M');
aux = triu(D1,1);
[Is,Js] = find(aux>0 & aux<ts);
if ~isempty(Is),
Is = ver_eq(Is);
M = extract(M,Is);
% D1 = extract(D1,Is);
end;
% D1 = dist(M,M');
% Search for repeated indexes
function [Is] = ver_eq(I);
l = length(I); Is = [];
if l > 1,
for i=1:l-1,
aux = I(i);
auxI = I(i+1:end);
el = find(auxI == aux);
if isempty(el),
Is = [Is,aux];
end;
end;
Is = [Is,I(end)];
else,
Is = I;
end;
% Function Extracts lines from M indexed by I
function [M] = extract(M,I);
Maux = zeros(size(M));
Maux(I,:) = M(I,:);
M = M - Maux;
[I] = find(M(:,1)~=0);
M = M(I,:);
% Function normalizes matrix over [0,1]
function [Dn] = norma(D);
% Dn -> normalized vector over [0,1]
[np,ni] = size(D);
if ni == 1,
Dn = (D - min(D))./(max(D)-min(D));
else,
vmaxD = max(D); vminD = min(D);
for i=1:ni,
Dn(:,i) = (D(:,i) - vminD(i))./(vmaxD(i)-vminD(i));
end;
end;
% End Function NORMA
% Print Affinity Landscape and Population of Individualsfunction [] = imprime(PRINT,vx,vy,vz,x,y,fx,it,mit);% x,fx -> current values% vxplot, vplot -> original (base) functionif PRINT == 1, if rem(it,mit) == 0, mesh(vx,vy,vz); hold on; % axis([-10 10 -10 10 0 100]);
xlabel('x'); ylabel('y'); zlabel('f(x,y)');
plot3(x,y,fx,'k*'); drawnow; hold off;
end;end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -