⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 refs.html

📁 关于LDPC编/译码的方针平台。能随机产生信源和模拟高斯信道。
💻 HTML
字号:
<HTML><HEAD><TITLE> References on Low Density Parity Check Codes </TITLE></HEAD><BODY><H1> References on Low Density Parity Check Codes </H1>Robert Gallager's original work on low density parity check codes was publishedas the following book, based his doctoral dissertation, and a related paper:<BLOCKQUOTE><P>Gallager, R. G. (1963) <I>Low Density Parity Check Codes</I>,   Cambridge, MA: MIT Press.<P>Gallager, R. G. (1962) ``Low-density parity-check codes'', <I>IRE   Transactions on Information Theory</I>, vol. IT-8, pp. 21-28.</BLOCKQUOTE>More recent work on these codes by David MacKay and myself was publishedas follows:<BLOCKQUOTE><P>MacKay, D. J. C. and Neal, R. M. (1996) ``Near Shannon limit performance   of low density parity check codes'', <I>Electronics Letters</I>,   vol. 32, pp. 1645-1646. Reprinted with printing errors corrected   in vol. 33, pp. 457-458.<P>MacKay, D. J. C. (1999) ``Good error-correcting codes based on very   sparse matrices'', <I>IEEE Transactions on Information Theory</I>,   vol. 45, pp. 399-431.</BLOCKQUOTE>The decoding algorithms described in the above references can visualizedin terms of a ``factor graph'' representation of the code, as describedin the following paper:<BLOCKQUOTE><P>Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (1998) ``Factor graphs and the sum-product algorithm'', available from <A HREF="http://www.cs.toronto.edu/~frey/papers/fgspa.abs.html">here</A>.</BLOCKQUOTE>I presented the application of sparse matrix techniques to encoding ofLDPC codes at the IMA workshop on Codes, Systems and Graphical Models,Minneapolis, 1999.  You can view the slides of this talk as <AHREF="sparse-encode.ps.gz">Postscript</A> or <AHREF="sparse-encode.pdf">PDF</A>.  <B>Note</B>: Due to a bug in theprogram I used then, the results shown for the minimal product heuristic inthese slides are somewhat worse than the actual performance.  For instance,the number of bit operations per check bit for for <I>M</I>=3200 with3 checks per bit is actually around 12.7, not the value around 17 shownon one of the slides.<P>Text and references to many more recent and classical papers can beobtained via the <A HREF="http://www.ima.umn.edu/csg/">IMA workshop'sweb page</A>.<HR><A HREF="index.html">Back to index for LDPC software</A></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -