📄 mhmmparzen_train_observed.m
字号:
function [initState, transmat, mu, Nproto, pick] = mhmmParzen_train_observed(obsData, hiddenData, ...
nstates, maxNproto, varargin)
% mhmmParzentrain_observed with mixture of Gaussian outputs from fully observed sequences
% function [initState, transmat, mu, Nproto] = mhmm_train_observed_parzen(obsData, hiddenData, ...
% nstates, maxNproto)
%
%
% INPUT
% If all sequences have the same length
% obsData(:,t,ex)
% hiddenData(ex,t) - must be ROW vector if only one sequence
% If sequences have different lengths, we use cell arrays
% obsData{ex}(:,t)
% hiddenData{ex}(t)
%
% Optional argumnets
% dirichletPriorWeight - for smoothing transition matrix counts
% mkSymmetric
%
% Output
% mu(:,q)
% Nproto(q) is the number of prototypes (mixture components) chosen for state q
[transmat, initState] = transmat_train_observed(...
hiddenData, nstates, varargin{:});
% convert to obsData(:,t*nex)
if ~iscell(obsData)
[D T Nex] = size(obsData);
obsData = reshape(obsData, D, T*Nex);
else
obsData = cat(2, obsData{:});
hiddenData = cat(2, hiddenData{:});
end
[mu, Nproto, pick] = parzen_fit_select_unif(obsData, hiddenData(:), maxNproto);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -