⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 parzendc.m

📁 这个为模式识别工具箱
💻 M
字号:
%PARZENDC Parzen density based classifier% %  [W,H] = PARZENDC(A)%  W     = PARZENDC(A,H)% % INPUT%  A   Dataset%  H   Smoothing parameters (optional; default: estimated from A for each class)%% OUTPUT%  W   Trained Parzen classifier%  H   Smoothing parameters, estimated from the data%% DESCRIPTION% For each of the classes in the dataset A, a Parzen density is estimated% using PARZENML. For each class, a feature normalisation on variance is% included in the procedure. As a result, the Parzen density estimate uses% different smoothing parameters for each class and each feature.%% If a set of smoothing parameters H is specified, no learning is performed, % only the classifier W is produced. H should have the size of [C x K] if % A has C classes and K features. If the size of H is [1 x K] or [C x 1], % or [1 x 1], then identical values are assumed for all the classes and/or% features.%% The densities for the points of a dataset B can be found by D = B*W.% D is an [M x C] dataset, if B has M objects.% % EXAMPLES% See PREX_DENSITY.%% SEE ALSO% DATASETS, MAPPINGS, PARZENC, PARZEN_MAP, PARZENML % Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: parzendc.m,v 1.9 2004/06/04 13:24:52 duin Exp $function [W,h] = parzendc(a,h)	prtrace(mfilename);		if nargin < 2		prwarning(5,'Smoothing parameters not specified, estimated from the data.');		h = [];	end	% No input arguments: return an untrained mapping.	if nargin == 0 | isempty(a)		W = mapping(mfilename,h); 		W = setname(W,'Parzen Classifier');		return; 	end	islabtype(a,'crisp');	isvaldset(a,2,2); % at least 2 objects per class, 2 classes	[m,k,c] = getsize(a);	nlab = getnlab(a);	if ~isempty(h)       % Take user settings for smoothing parameters.				if size(h,1) == 1, h = repmat(h,c,1); end		if size(h,2) == 1, h = repmat(h,1,k); end		if any(size(h) ~= [c,k])			error('Array with smoothing parameters has a wrong size.');		end	else   % Estimate smoothing parameters for each class separately.		% Scale A such that its mean is shifted to the origin and 		% the variances of all features are scaled to 1. 		ws = scalem(a,'variance');		b = a*ws;  		% SCALE is basically [1/mean(A) 1/STD(A)] based on the properties of SCALEM.		scale = ws.data.rot;						if (size(scale,1) ~= 1) % formally ws.data.rot stores a rotation matrix 			scale = diag(scale)'; % extract the diagonal if it does,		end                     % otherwise we already have it		h = zeros(c,k);		for j=1:c			bb = seldat(b,j); 				% BB consists of the j-th class only.			h(j,:) = repmat(parzenml(bb),1,k)./scale;		end	end	W = mapping('parzen_map','trained',{a,h,getprior(a)},getlablist(a),k,c);	W = setname(W,'Parzen Classifier');	W = setcost(W,a);return;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -