📄 parzendc.m
字号:
%PARZENDC Parzen density based classifier% % [W,H] = PARZENDC(A)% W = PARZENDC(A,H)% % INPUT% A Dataset% H Smoothing parameters (optional; default: estimated from A for each class)%% OUTPUT% W Trained Parzen classifier% H Smoothing parameters, estimated from the data%% DESCRIPTION% For each of the classes in the dataset A, a Parzen density is estimated% using PARZENML. For each class, a feature normalisation on variance is% included in the procedure. As a result, the Parzen density estimate uses% different smoothing parameters for each class and each feature.%% If a set of smoothing parameters H is specified, no learning is performed, % only the classifier W is produced. H should have the size of [C x K] if % A has C classes and K features. If the size of H is [1 x K] or [C x 1], % or [1 x 1], then identical values are assumed for all the classes and/or% features.%% The densities for the points of a dataset B can be found by D = B*W.% D is an [M x C] dataset, if B has M objects.% % EXAMPLES% See PREX_DENSITY.%% SEE ALSO% DATASETS, MAPPINGS, PARZENC, PARZEN_MAP, PARZENML % Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: parzendc.m,v 1.9 2004/06/04 13:24:52 duin Exp $function [W,h] = parzendc(a,h) prtrace(mfilename); if nargin < 2 prwarning(5,'Smoothing parameters not specified, estimated from the data.'); h = []; end % No input arguments: return an untrained mapping. if nargin == 0 | isempty(a) W = mapping(mfilename,h); W = setname(W,'Parzen Classifier'); return; end islabtype(a,'crisp'); isvaldset(a,2,2); % at least 2 objects per class, 2 classes [m,k,c] = getsize(a); nlab = getnlab(a); if ~isempty(h) % Take user settings for smoothing parameters. if size(h,1) == 1, h = repmat(h,c,1); end if size(h,2) == 1, h = repmat(h,1,k); end if any(size(h) ~= [c,k]) error('Array with smoothing parameters has a wrong size.'); end else % Estimate smoothing parameters for each class separately. % Scale A such that its mean is shifted to the origin and % the variances of all features are scaled to 1. ws = scalem(a,'variance'); b = a*ws; % SCALE is basically [1/mean(A) 1/STD(A)] based on the properties of SCALEM. scale = ws.data.rot; if (size(scale,1) ~= 1) % formally ws.data.rot stores a rotation matrix scale = diag(scale)'; % extract the diagonal if it does, end % otherwise we already have it h = zeros(c,k); for j=1:c bb = seldat(b,j); % BB consists of the j-th class only. h(j,:) = repmat(parzenml(bb),1,k)./scale; end end W = mapping('parzen_map','trained',{a,h,getprior(a)},getlablist(a),k,c); W = setname(W,'Parzen Classifier'); W = setcost(W,a);return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -