📄 nmsc.m
字号:
%NMSC Nearest Mean Scaled Classifier% % W = NMSC(A)% % INPUT% A Trainign dataset%% OUTPUT% W Nearest Mean Scaled Classifier mapping%% DESCRIPTION% Computation of the linear discriminant for the classes in the dataset A% assuming zero covariances and equal class variances. The use of soft% labels is supported.% % SEE ALSO% DATASETS, MAPPINGS, NMC, LDC ,FISHERC, QDC, UDC % Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: nmsc.m,v 1.6 2003/11/22 23:19:27 bob Exp $function w = nmsc(a) prtrace(mfilename); % No input arguments: return an untrained mapping. if (nargin < 1) | (isempty(a)) w = mapping(mfilename); w = setname(w,'Scaled Nearest Mean'); return end islabtype(a,'crisp','soft'); isvaldset(a,1,2); % at least 1 object per class, 2 classes [m,k,c] = getsize(a); p = getprior(a); [U,GG] = meancov(a); % All class covariance matrices are assumed to be diagonal. They are scaled % by the priors, unlike the standard nearest mean classifier (NMC). G = zeros(c,k); for j = 1:c G(j,:) = diag(GG(:,:,j))'; end G = diag(p*G); % The two-class case is special, as it can be conveniently stored as an % affine mapping. if (c == 2) ua = +U(1,:); ub = +U(2,:); G = inv(G); R = G*(ua - ub)'; offset = (ub*G*ub' - ua*G*ua')/2 + log(p(1)/p(2)); w = affine(R,offset,a,getlablist(a)); w = cnormc(w,a); else pars.mean = +U; pars.cov = G; pars.prior = p; w = mapping('normal_map','trained',pars,getlab(U),k,c); end w = setname(w,'Scaled Nearest Mean'); w = setcost(w,a);return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -