📄 contents.m
字号:
% Pattern Recognition Tools% Version URV 24-Mar-2004%% This is prelimanary, many support routines in ./private ./@datasets% and ./@mappings are not mentioned.%%Datasets and Mappings (just most important routines)%---------------------%dataset Define and retrieve dataset from datamatrix and labels%datasets List information on datasets (just help, no command)%classsizes Retrieve sizes of classes%gencirc Generation of a one-class circular dataset%genclass Generate class frequency distribution%genlab Generate dataset labels%getlab Retrieve object labels from datasets and mappings%getnlab Retrieve nummeric object labels from dataset%getfeat Retrieve feature labels from datasets and mappings%get Get fields from datasets or mappings%setdata Change data in dataset%setlabels Change labels of dataset or mapping%mapping Define and retrieve mapping and classifier from data%mappings List information on mappings (just help, no command)%renumlab Convert labels to numbers%matchlab Match different labelings%primport Convert old datasets to present PRTools definition%remclass Remove a class from a dataset%seldat Retrieve part of a dataset%%Data Generation (more in prdatasets)%---------------%circles3d Create a dataset containing 2 circles in 3 dimensions%lines5d Create a dataset containing 3 lines in 5 dimensions%gauss Generation of multivariate Gaussian distributed data%gendat Generation of classes from given data set%gendatb Generation of banana shaped classes%gendatc Generation of circular classes%gendatd Generation of two difficult classes%gendath Generation of Highleyman classes%gendatk Nearest neighbour data generation%gendatl Generation of Lithuanian classes%gendatm Generation of 8 2d classes%gendatp Parzen density data generation%gendats Generation of two Gaussian distributed classes%prdata Read data from file%seldat Select classes / features / objects from dataset%prdataset Read existing dataset from file%prdatasets Overview of all datasets and data generators%%Linear and Quadratic Classifiers %--------------------------------%klldc Linear classifier based on KL expansion of common cov matrix%pcldc Linear classifier based on PCA expansion on the joint data%loglc Logistic linear classifier%fisherc Minimum least square linear classifier%ldc Normal densities based linear (muli-class) classifier%nmc Nearest mean linear classifier%nmsc Scaled nearest mean linear classifier%quadrc Quadratic classifier%qdc Normal densities based quadratic (multi-class) classifier%udc Uncorrelated normal densities based quadratic classifier%polyc Add polynomial features and run arbitrary classifier%subsc Subspace classifier%%classc Converts a mapping into a classifier%labeld Find labels of objects by classification%logdens Convert density estimates to log-densities for more accuracy%testc General error estimation routine for trained classifiers%%Other Classifiers %-----------------%knnc k-nearest neighbour classifier (find k, build classifier)%knn_map Map a dataset on a K-NN classifier, back end routine%testk Error estimation for k-nearest neighbour rule%edicon Edit and condense training sets%%parzenc Parzen classifier%parzendc Parzen density based classifier%parzen_map Map a dataset on a Parzen classfier, back end routine%testp Error estimation for Parzen classifier%%treec Construct binary decision tree classifier%tree_map Map a dataset on a decision tree, back end routine%naivebc Naive Bayes classifier%bpxnc Feed forward neural network classifier by backpropagation%lmnc Feed forward neural network by Levenberg-Marquardt rule%neurc Automatic neural network classifier%perlc Linear perceptron %rbnc Radial basis neural network classifier%rnnc Random neural network classifier%ffnc Feed-forward neural net classifier back-end routine%%svc Support vector classifier%svo Support vector optimizer%%Normal Density Based Classification%-----------------------------------%distmaha Mahalanobis distance%meancov Estimation of means and covariance matrices from multiclass data%nbayesc Bayes classifier for given normal densities%normal_map Back-end routine for computing normal densities%ldc Normal densities based linear (muli-class) classifier%qdc Normal densities based quadratic (multi-class) classifier%udc Uncorrelated normal densities based quadratic classifier%mogc Mixture of gaussians classification%testn Error estimate of discriminant on normal distributions%%Feature Selection%-----------------%feateval Evaluation of a feature set%featrank Ranking of individual feature permormances%featselb Backward feature selection%featself Forward feature selection%featsellr Plus-l-takeaway-r feature selection%featseli Feature selection on individual performance%featselm Feature selection map, general routine for feature selection%featselo Branch and bound feature selection%featselp Floating forward feature selection%%Classifiers and tests (general)%-------------------------------%bayesc Bayes classifier by combining density estimates%classim Classify image using a given classifier%classc Convert mapping to classifier%labeld Find labels of objects by classification%cleval Classifier evaluation (learning curve)%clevalb Classifier evaluation (learning curve), bootstrap version%clevalf Classifier evaluation (feature size curve)%clevals Classifier evaluation (feature /learning curve), bootstrap%confmat Computation of confusion matrix%costm Cost mapping, classification using costs%crossval Crossvalidation %cnormc Normalisation of classifiers%disperror Display error matrix with information on classifiers and datasets%labelim Construct image of labeled pixels%logdens Convert density estimates to log-densities for more accuracy%mclassc Computation of multi-class classifier from 2-class discriminants%reject Compute error-reject trade-off curve%roc Receiver-operator curve%testc General error estimation routine for trained classifiers%%Mappings%--------%affine Construct affine (linear) mapping from parameters%bhatm Two-class Bhattacharryya mapping%cmapm Compute some special maps%featselm Feature selection map, general routine for feature selection%fisherm Fisher mapping%invsigm Inverse sigmoid map%gaussm Mixture of Gaussians density estimation%kernelm PCA based kernel mapping%klm Decorrelation and Karhunen Loeve mapping (PCA)%klms Scaled version of klm, useful for prewhitening%knnm k-Nearest neighbor density estimation%mclassm Computation of mapping from multi-class dataset%map General routine for computing and executing mappings%nlfisherm Nonlinear Fisher mapping%normm Object normalization map%parzenm Parzen density estimation%parzenml Optimization of smoothing parameter in Parzen density estimation.%pca Principal Component Analysis%pcaklm Back en routine for PC and KL mappings%proxm Proximity mapping and kernel construction%reducm Reduce to minimal space mapping%remoutl Remove outliers%scalem Compute scaling data%sigm Simoid mapping%spatm Augment image dataset with spatial label information%%gtm Fit a Generative Topographic Mapping (GTM) by EM%plotgtm Plot a Generative Topographic Mapping in 2D%som Simple routine computing a Self-Organizing Map (SOM)%plotsom Plot a Self-Organizing Map in 2D%%Classifier combiners%--------------------%averagec Combining linear classifiers by averaging coefficients%baggingc Bootstrapping and aggregation of classifiers%votec Voting classifier combiner (Voting)%maxc Maximum classifier combiner%minc Minimum classifier combiner%meanc Mean classifier combiner%medianc Median classifier combiner%prodc Product classifier combiner%traincc Train combining classifier%fixedcc Fixed combiner construction, back end%parsc Parse classifier or map%parallel Parallel combining of classifiers%stacked Stacked combining of classifiers%sequential Sequential combining of classifiers%%Image operations%----------------%classim Classify image using a given classifier%dataim Image operation on dataset images%data2im Convert dataset to image%getobjsize Retrieve image size of feature images in datasets%getfeatsize Retrieve image size of object images in datasets%datfilt Filter dataset image%datgauss Filter dataset image by Gaussian filter%datunif Filter dataset image by uniform filter%im2obj Convert image to object in dataset%im2feat Convert image to feature in dataset%spatm Augment image dataset with spatial label information%show Display images in datasets and mappings%%Clustering and distances%------------------------%distm Distance matrix between two data sets.%emclust Expectation - maximization clustering%proxm Proximity mapping and kernel construction%hclust Hierarchical clustering%kcentres k-centres clustering%kmeans k-means clustering%modeseek Clustering by modeseeking%%mds Non-linear mapping by multi-dimensional scaling (Sammon)%mds_cs Linear mapping by classical scaling%mds_init Initialisation of multi-dimensional scaling%mds_stress Dissimilarity of distance matrices%%Plotting%--------%gridsize Set gridsize used in the PRTools plot commands%plotc Plot discriminant function for two features%plotr Plot error curves%plotf Plot feature distribution%plotm Plot mapping%plotdg Plot dendrgram (see hclust)%scatterd Scatterplot%scatterdui Scatterplot scatterplot with feature selection%%Various tests and support routines%----------------------------------%cdats Support routine for checking datasets%iscolumn Test on column array%iscomdset Test on compatible datasets%isdataim Test on image dataset%isdataset Test on dataset%isfeatim Test on feature image dataset%ismapping Test on mapping%isobjim Test on object image dataset%isparallel Test on parallel mapping%isstacked Test on stacked mapping%issym.m Test on symmetric matrix%isvaldset Test on valid dataset%matchlablist Match entries of label lists%newfig Control of figures on the screen%newline Generate a new line in the command window%nlabcmp Compare two label lists and count the differences%%Examples%--------%prex_cleval learning curves%prex_combining classifier combining%prex_confmat confusion matrix, scatterplot and gridsize%prex_datasets standard datasets%prex_density Various density plots%prex_eigenfaces Use of images and eigenfaces%prex_matchlab K-means clustering and matching labels%prex_mcplot Multi-class classifier plot%prex_plotc Dataset scatter and classifier plot%prex_som Training a SelfOrganizing Maps%prex_spatm Spatial smoothing of image classification%prex_cost Cost matrices and rejection%prex_logdens Density based classifier improvement%%prversion returns version information on PRTools%prtver prtools version back end%typp list prtools routine nicely
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -