⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gendatb.m

📁 这个为模式识别工具箱
💻 M
字号:
%GENDATB Generation of banana shaped classes% %    A = GENDATB(N,S)% % INPUT%       N    number of generated samples of vector with %            number of samples per class%       S    variance of the normal distribution (opt, def: s=1)%% OUTPUT%       A    generated dataset%% DESCRIPTION% Generation of a 2-dimensional 2-class dataset A of N objects with a% banana shaped distribution.  The data is uniformly distributed along the% bananas and is superimposed with a normal distribution with standard% deviation S in all directions. Class priors are P(1) = P(2) = 0.5.% Defaults: N = [50,50], S = 1.% % SEE ALSO% DATASETS, PRDATASETS% Copyright: A. Hoekstra, R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: gendatb.m,v 1.3 2003/07/21 09:27:21 davidt Exp $function a = gendatb(N,s)	prtrace(mfilename);		if nargin < 1, N = [50,50]; end	if nargin < 2, s = 1; end   % Default size of the banana: 	r = 5;   % Default class prior probabilities:	p = [0.5 0.5];	N = genclass(N,p);	domaina = 0.125*pi + rand(1,N(1))*1.25*pi;	a   = [r*sin(domaina') r*cos(domaina')] + randn(N(1),2)*s;	domainb = 0.375*pi - rand(1,N(2))*1.25*pi;	a   = [a; [r*sin(domainb') r*cos(domainb')] + randn(N(2),2)*s + ...         ones(N(2),1)*[-0.75*r -0.75*r]];	lab = genlab(N);		a = dataset(a,lab,'name','Banana Set','lablist',genlab([1;1]),'prior',p);return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -