📄 gendatb.m
字号:
%GENDATB Generation of banana shaped classes% % A = GENDATB(N,S)% % INPUT% N number of generated samples of vector with % number of samples per class% S variance of the normal distribution (opt, def: s=1)%% OUTPUT% A generated dataset%% DESCRIPTION% Generation of a 2-dimensional 2-class dataset A of N objects with a% banana shaped distribution. The data is uniformly distributed along the% bananas and is superimposed with a normal distribution with standard% deviation S in all directions. Class priors are P(1) = P(2) = 0.5.% Defaults: N = [50,50], S = 1.% % SEE ALSO% DATASETS, PRDATASETS% Copyright: A. Hoekstra, R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: gendatb.m,v 1.3 2003/07/21 09:27:21 davidt Exp $function a = gendatb(N,s) prtrace(mfilename); if nargin < 1, N = [50,50]; end if nargin < 2, s = 1; end % Default size of the banana: r = 5; % Default class prior probabilities: p = [0.5 0.5]; N = genclass(N,p); domaina = 0.125*pi + rand(1,N(1))*1.25*pi; a = [r*sin(domaina') r*cos(domaina')] + randn(N(1),2)*s; domainb = 0.375*pi - rand(1,N(2))*1.25*pi; a = [a; [r*sin(domainb') r*cos(domainb')] + randn(N(2),2)*s + ... ones(N(2),1)*[-0.75*r -0.75*r]]; lab = genlab(N); a = dataset(a,lab,'name','Banana Set','lablist',genlab([1;1]),'prior',p);return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -