📄 nmc.m
字号:
%NMC Nearest Mean Classifier% % W = NMC(A)%% INPUT% A Dataset%% OUTPUT% W Nearest Mean Classifier %% DESCRIPTION% Computation of the nearest mean classifier between the classes in the% dataset A. The use of soft labels is supported.%% SEE ALSO% DATASETS, MAPPINGS, NMSC, LDC, FISHERC, QDC, UDC % Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: nmc.m,v 1.9 2004/12/06 07:38:27 duin Exp $function W = nmc(a) prtrace(mfilename); if nargin < 1 | isempty(a) W = mapping(mfilename); W = setname(W,'Nearest Mean'); return end islabtype(a,'crisp','soft'); isvaldset(a,1,2); % at least 1 object per class, 2 classes [m,k,c] = getsize(a); u = meancov(a); if c == 2 % 2-class case: store linear classifier u1 = +u(1,:); u2 = +u(2,:); R = [u1-u2]'; offset =(u2*u2' - u1*u1')/2; W = affine([R -R],[offset -offset],a,getlablist(a)); W = cnormc(W,a); W = setname(W,'Nearest Mean'); else % multiclass case, store as 1-nn classifier, best thing to do? W = knnc(u,1); W = setname(W,'Nearest Mean'); end W = setcost(W,a); return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -