📄 classc.m
字号:
%CLASSC Convert mapping to classifier%% W = CLASSC(W)% W = W*CLASSC%% INPUT% W Any mapping or dataset% % OUTPUT% W Classifier mapping or normalized dataset: outputs/features sum to 1%% DESCRIPTION% The mapping W is converted into a classifier by normalizing the outputs:% the sum of the outputs for one sample equals 1. It is assumed that W % already generates densities or non-normalized posterior probability % estimates. This is true for neural networks or for two-class discriminants % calling CNORMC.% A one-dimensional map is converted into a two-class classifier, provided% that during the construction a class label was supplied. If not, the map% cannot be converted and an error is generated.% If D = A*W is the result of a mapping, it is normalized (the features of% each sample sum to 1). This is identical to D = NORMM(D).%% SEE ALSO% MAPPINGS, DATASETS% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: classc.m,v 1.9 2004/02/20 12:50:29 bob Exp $function w = classc(w) prtrace(mfilename); if (nargin == 0) % Untrained mapping. w = mapping('classc','combiner'); elseif (ismapping(w)) % If mapping is stacked or parallel, recurse over the individual % sub-mappings and call CLASSC for each of them. if (isstacked(w)) | (isparallel(w)) v = cell(1,length(w.data)); for j = 1:length(w.data) if ismapping(w.data{j}) % the parallel combiner may have nonmapping data v{j} = feval(mfilename,w.data{j}); else v{j} = w.data{j}; end end w = setdata(w,v); else conv = get(w,'out_conv'); if (conv < 1) % Set the "normalization" bit in the mapping's output conversion flag w = set(w,'out_conv',conv+2); else prwarning(3,'mapping is already a classifier'); end; end elseif (isdataset(w)) w = w*normm; w = w*costm; else error('input should be mapping or dataset'); endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -