📄 gendatm.m
字号:
%GENDATM Generation of multi-class 2-D data% % A = GENDATM(N)% % INPUT% N Vector of class sizes (default: 20)%% OUTPUT% A Dataset%% DESCRIPTION% Generation of N samples in 8 classes of 2 dimensionally distributed data% vectors. Classes have equal prior probabilities. If N is a vector of% sizes, exactly N(I) objects are generated for class I, I = 1..8.% % SEE ALSO% DATASETS, PRDATASETS% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: gendatm.m,v 1.3 2003/07/30 20:04:21 dick Exp $function a = gendatm(n) prtrace(mfilename); if (nargin == 0) prwarning(3,'number of samples to generate not specified, assuming 20'); n = repmat(20,1,8); end; % Set equal priors and generate a class distribution according to it. p = repmat(1/8,1,8); n = genclass(n,p); % Generate 8 classes... a1 = +gendath(n(1:2)); % ...first 2 classes: Highleyman data. a2 = +gendatc(n(3:4))./5; % ...next 2 classes : spherical classes. a3 = +gendatb(n(5:6))./5; % ...next 2 classes : banana data. a4 = +gendatl(n(7:8))./5; % ...next 2 classes : Lithuanian data. % Glue classes together with some proper offsets. a = [a1; a2+5; a3+repmat([5,0],n(5)+n(6),1); a4+repmat([0 5],n(7)+n(8),1)]; lab = genlab(n,['a';'b';'c';'d';'e';'f';'g';'h']); a = dataset(a,lab,'name','Multi-Class Problem');return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -