📄 pcaklm.m
字号:
%PCAKLM Principal Component Analysis/Karhunen-Loeve Mapping% (PCA or MCA of overall/mean covariance matrix)% % [W,FRAC] = PCAKLM(TYPE,A,N)% [W,N] = PCAKLM(TYPE,A,FRAC)%% INPUT% A Dataset% TYPE Type of mapping: 'pca' or 'klm'. Default: 'pca'.% N or FRAC Number of dimensions (>= 1) or fraction of variance (< 1) % to retain; if > 0, perform PCA; otherwise MCA. Default: N = inf.%% OUTPUT% W Affine Karhunen-Loeve mapping% FRAC or N Fraction of variance or number of dimensions retained.%% DESCRIPTION% Performs a principal component analysis (PCA) or minor component analysis% (MCA) on the overall or mean class covariance matrix (weighted by the% class prior probabilities). It finds a rotation of the dataset A to an% N-dimensional linear subspace such that at least (for PCA) or at most (for% MCA) a fraction FRAC of the total variance is preserved.%% PCA is applied when N (or FRAC) >= 0; MCA when N (or FRAC) < 0. If N is % given (abs(N) >= 1), FRAC is optimised. If FRAC is given (abs(FRAC) < 1), % N is optimised. %% Objects in a new dataset B can be mapped by B*W, W*B or by A*KLM([],N)*B.% Default (N = inf): the features are decorrelated and ordered, but no % feature reduction is performed.%% ALTERNATIVE%% V = PCAKLM(A,TYPE,0)% % Returns the cumulative fraction of the explained variance. V(N) is the % cumulative fraction of the explained variance by using N eigenvectors.%% This function should not be called directly, only trough PCA or KLM.% Use FISHERM for optimizing the linear class separability (LDA).% % SEE ALSO% MAPPINGS, DATASETS, PALDC, KLLDC, PCA, KLM, FISHERM% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: pcaklm.m,v 1.15 2005/03/04 10:36:25 duin Exp $function [w,truefrac] = pcaklm (type,a,frac) prtrace(mfilename); truefrac = []; % Default: preserve all dimensions (identity mapping). if (nargin < 3) | (isempty(frac)) frac = inf; prwarning (3,'no dimensionality given, only decorrelating and ordering dimensions'); end % Default: perform PCA. if (nargin < 1) | (isempty(type)) type = 'pca'; prwarning (3,'no type given, assuming PCA'); end if (strcmp(type,'pca')) mapname = 'Principal Component Analysis'; elseif (strcmp(type,'klm')) mapname = 'Karhunen-Loeve Mapping'; else error('unknown type specified'); end % Empty mapping: return straightaway. if (nargin < 2) | (isempty(a)) w = mapping(type,frac); w = setname(w,mapname); return end if ~isdataset(a) a = dataset(a,1); % make sure we have a dataset end islabtype(a,'crisp','soft'); isvaldset(a,1); % at least 1 object per class [m,k,c] = getsize(a); p = getprior(a); % If FRAC < 0, perform minor component analysis (MCA) instead of % principal component analysis. mca = (frac < 0); frac = abs(frac); % Shift mean of data to origin. b = a*scalem(a); % If there are less samples M than features K, first perform a lossless % projection to the (M-1) dimensional space spanned by the samples. if (m <= k) u = reducm(b); b = b*u; korg = k; [m,k] = size(b); else u = []; end % Calculate overall or average class prior-weighted covariance matrix and % find eigenvectors F. if (strcmp(type,'pca')) if (c==0) % we have unlabeled data! bb = +b; % use all else bb = []; for j = 1:c bb = [bb; +seldat(b,j)*p(j)]; end end G = cov(bb); else [U,GG] = meancov(b,1); G = zeros(k,k); for i = 1:c G = G + p(i)*GG(:,:,i); end end [F,V] = eig(G); % v = V(I) contains the sorted eigenvalues: % descending for PCA, ascending for MCA. if (mca) [v,I] = sort(diag(V)); else [v,I] = sort(-diag(V)); end if (frac == inf) % Return all dimensions, decorrelated and ordered. n = k; truefrac = k; elseif (frac == 0) % Just return cumulative retained variance. w = cumsum(v)/sum(v); return elseif (frac >= 1) % Return FRAC dimensions. n = abs(frac); if (n > k), error('illegal dimensionality requested'); end I = I(1:n); sv = sum(v); if (sv ~= 0), truefrac = cumsum(v(1:n))/sv; else, truefrac = 0; end; elseif (frac > 0) % Return the N dimensions that retain at least (PCA) % or at most (MCA) FRAC variance. J = find(cumsum(v)/sum(v) > frac); if (mca), n = J(1)-1; else, n = J(1); end; truefrac = n; I = I(1:n); end % If needed, apply pre-calculated projection to (M-1) dimensional subspace. if (~isempty(u)) rot = u.data.rot*F(:,I); off = u.data.offset*F(:,I); else rot = F(:,I); off = -mean(a*F(:,I)); end % Construct affine mapping. w = affine(rot,off,a); w = setname(w,mapname); return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -