📄 gendats.m
字号:
%GENDATS Generation of a simple classification problem of 2 Gaussian classes% % A = GENDATS (N,K,D,LABTYPE)% % INPUT% N Dataset size, or 2-element array of class sizes (default: [50 50]).% K Dimensionality of the dataset to be generated (default: 2).% D Distance between class means in the first dimension (default: 1).% LABTYPE Label type to generate, 'crisp' or 'soft' (default: 'crisp').%% OUTPUT% A Dataset.%% DESCRIPTION% Generation of a K-dimensional 2-class dataset A of N objects. Both classes % are Gaussian distributed with identity matrix as covariance matrix. Their % means are on a distance D. Class priors are P(1) = P(2) = 0.5.%% If N is a vector of sizes, exactly N(I) objects are generated for class I, % I = 1,2.%% LABTYPE defines the desired label type: 'crisp' or 'soft'. In the latter % case true posterior probabilities are set for the labels.%% SEE ALSO% DATASETS, PRDATASETS% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: gendats.m,v 1.4 2004/09/26 13:04:10 duin Exp $function A = gendats (N,k,d,labtype) prtrace(mfilename); if (nargin < 1), prwarning(2,'class sizes not specified, assuming [50 50]'); N = [50 50]; end if (nargin < 2), prwarning(2,'dimensionality not specified, assuming 2'); k = 2; end if (nargin < 3), prwarning(2,'class mean distance not specified, assuming 1'); d = 2; end if (nargin < 4), prwarning(2,'label type not specified, assuming "crisp"'); labtype = 'crisp'; end % Set equal priors and generate random class sizes according to these. p = [0.5 0.5]; N = genclass(N,p); % Unit covariance matrices, zero mean except for distance D in first dim. GA = eye(k); GB = eye(k); ma = zeros(1,k); mb = zeros(1,k); mb(1) = d; U = dataset([ma;mb],[1 2]'); % Create dataset. A = gauss(N,U,cat(3,GA,GB),labtype); A = setname(A,'Simple Problem');return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -