📄 tryrand3.cpp
字号:
#define WANT_STREAM
#define WANT_MATH
#define WANT_TIME
#include "include.h"
#include "newran.h"
#include "tryrand.h"
#ifdef use_namespace
using namespace NEWRAN;
#endif
void SortAscending(Real* data, int max);
Real KS(Real* data, int n);
Real NormalDF(Real x);
double invchi95(int N);
double invchi99(int N);
void ChiSquaredTest(int* Observed, Real* Prob, int N, int n);
void TestBinomial(int N, Real p, int n);
void TestPoisson(Real mu, int n);
void TestNegativeBinomial(Real NX, Real p, int n);
void TestDiscreteGen(int N, Real* prob, int n);
inline Real square(Real x) { return x*x; }
inline Real cube(Real x) { return x*x*x; }
void test3(int n)
{
cout << endl;
// Do chi-squared tests to discrete data
cout << "ChiSquared tests for discrete data" << endl;
cout << "chisq should be less than 95% point in most cases" << endl;
cout << " and 99% point in almost all cases" << endl << endl;
{
Real p[] = { 0.05, 0.10, 0.05, 0.5, 0.01, 0.01, 0.03, 0.20, 0.05 };
TestDiscreteGen(9, p, n);
}
{
Real p[] = { 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.00625, 0.2 };
TestDiscreteGen(9, p, n);
}
TestNegativeBinomial(200.3, 0.05, n);
TestNegativeBinomial(150.3, 0.15, n);
TestNegativeBinomial(100.8, 0.18, n);
TestNegativeBinomial(100.8, 1.22, n);
TestNegativeBinomial(100.8, 9.0, n);
TestNegativeBinomial(10.5, 0.18, n);
TestNegativeBinomial(10.5, 1.22, n);
TestNegativeBinomial(10.5, 9.0, n);
TestNegativeBinomial(0.35, 0.18, n);
TestNegativeBinomial(0.35, 1.22, n);
TestNegativeBinomial(0.35, 9.0, n);
TestBinomial(100, 0.45, n);
TestBinomial(100, 0.25, n);
TestBinomial(100, 0.02, n);
TestBinomial(100, 0.01, n);
TestBinomial(49, 0.60, n);
TestBinomial(21, 0.70, n);
TestBinomial(10, 0.90, n);
TestBinomial(10, 0.25, n);
TestBinomial(10, 0.10, n);
TestPoisson(0.75, n);
TestPoisson(4.3, n);
TestPoisson(10, n);
TestPoisson(100, n);
Real* data = new Real[n];
if (!data) Throw(Bad_alloc());
// Apply KS test to a variety of continuous distributions
// - use cdf transform to convert to uniform
cout << endl;
cout << "Kolmogorov-Smirnoff tests for continuous distributions" << endl;
cout << "25%, 5%, 1%, .1% upper points are 1.019, 1.358, 1.628, 1.950"
<< endl;
cout << "5% lower point is 0.520" << endl;
cout << "Values should be mostly less than 5% upper point" << endl;
cout << " and less than 1% point almost always" << endl << endl;
{
ChiSq X(1, 1.44);
for (int i = 0; i < n; i++)
{
Real x = sqrt(X.Next());
data[i] = NormalDF(x - 1.2) - NormalDF(-x - 1.2);
}
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
ChiSq X(4);
for (int i = 0; i < n; i++)
{ Real x = 0.5 * X.Next(); data[i] = (1+x)*exp(-x); }
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
ChiSq X(2);
for (int i = 0; i < n; i++) data[i] = exp(-0.5 * X.Next());
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Pareto X(0.5);
for (int i = 0; i < n; i++)
{ Real x = X.Next(); data[i] = 1.0 / sqrt(x); }
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Pareto X(1.5);
for (int i = 0; i < n; i++)
{ Real x = X.Next(); data[i] = 1.0 / (x * sqrt(x)); }
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Normal X;
for (int i = 0; i < n; i++)
{ Real x = X.Next(); data[i] = NormalDF(x); }
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Normal N; SumRandom X = 10 + 5 * N;
for (int i = 0; i < n; i++)
{ Real x = X.Next(); data[i] = NormalDF((x-10)/5); }
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Normal N; Cauchy C; MixedRandom X = N(0.9) + C(0.1);
for (int i = 0; i < n; i++)
{
Real x = X.Next();
data[i] = 0.9*NormalDF(x)+0.1*(atan(x)/3.141592654 + 0.5);
}
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Normal N; MixedRandom X = N(0.9) + (10*N)(0.1);
for (int i = 0; i < n; i++)
{
Real x = X.Next();
data[i] = 0.9*NormalDF(x)+0.1*NormalDF(x/10);
}
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Normal X0; SumRandom X = X0 * 0.6 + X0 * 0.8;
for (int i = 0; i < n; i++)
{ Real x = X.Next(); data[i] = NormalDF(x); }
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Normal X1;
MixedRandom X = X1(0.2) + (X1 * 2.5 + 1.1)(0.35) + (X1 + 2.3)(0.45);
for (int i = 0; i < n; i++)
{
Real x = X.Next();
data[i] = 0.20 * NormalDF(x)
+ 0.35 * NormalDF((x - 1.1) / 2.5)
+ 0.45 * NormalDF(x - 2.3);
}
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Gamma X(0.5);
for (int i = 0; i < n; i++)
{ Real x = X.Next(); data[i] = 2.0 * NormalDF(-sqrt(2 * x)); }
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Gamma X(3);
for (int i = 0; i < n; i++)
{ Real x = X.Next(); data[i] = (1+x+0.5*x*x)*exp(-x); }
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Gamma X1(0.85); Gamma X2(2.15); SumRandom X = X1 + X2;
for (int i = 0; i < n; i++)
{ Real x = X.Next(); data[i] = (1+x+0.5*x*x)*exp(-x); }
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Gamma X1(0.75); Gamma X2(0.25); SumRandom X = X1 + X2;
for (int i = 0; i < n; i++) data[i] = exp(-X.Next());
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Gamma X(2);
for (int i = 0; i < n; i++)
{ Real x = X.Next(); data[i] = (1+x)*exp(-x); }
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Exponential X;
for (int i = 0; i < n; i++) data[i] = exp(-X.Next());
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Cauchy X;
for (int i = 0; i < n; i++) data[i] = atan(X.Next())/3.141592654 + 0.5;
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Cauchy X0; SumRandom X = X0 * 0.3 + X0 * 0.7;
for (int i = 0; i < n; i++) data[i] = atan(X.Next())/3.141592654 + 0.5;
cout << X.Name() << ": " << KS(data, n) << endl;
}
{
Uniform X;
for (int i = 0; i < n; i++) data[i] = X.Next();
cout << X.Name() << ": " << KS(data, n) << endl;
}
delete [] data;
}
/*************************** Kolmogorov Smirnov Test ************************/
// test the data in the array (length n) for being uniform (0,1)
Real KS(Real* data, int n)
{
SortAscending(data, n);
Real D = 0.0;
for (int i = 0; i < n; i++)
{
Real d1 = (Real)(i+1) / (Real)n - data[i];
Real d2 = data[i] - (Real)i / (Real)n;
if (D < d1) D = d1; if (D < d2) D = d2;
}
return D * (sqrt(n) + 0.12 + 0.11 / sqrt(n));
}
/******************************** Quick sort ********************************/
// Quicksort.
// Essentially the method described in Sedgewick's algorithms in C++
// My version is still partially recursive, unlike Segewick's, but the
// smallest segment of each split is used in the recursion, so it should
// not overlead the stack.
// If the process does not seems to be converging an exception is thrown.
#define DoSimpleSort 17 // when to switch to insert sort
#define MaxDepth 50 // maximum recursion depth
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -