📄 traingdmorbr.m
字号:
close all
clear
echo on
clc
pause
clc
%定义训练样本矢量
P=[-1:0.05:1];
randn('seed',192736547);
T=sin(2*pi*P)+0.1*randn(size(P));
pause
%绘制样本数据点
plot(P,T,'+');
hold on;
%绘制部含噪声的正弦曲线
plot(P,sin(2*pi*P),':');
echo on
clc
pause
%close
clc
disp('1.动量批梯度下降算法traingdm');disp('2.贝叶斯正规则算法trainbr');
choice=input('请选择训练算法(1,2):');
figure(gcf);
if(choice==1)
echo on
clc
%建立一个前向神经网络
net=newff(minmax(P),[28,1],{'tansig','purelin'},'traingdm');
pause
clc
net.trainParam.show=50;
net.trainParam.lr=0.04;
net.trainParam.mc=0.9;
net.trainParam.epochs=8000;
net.trainParam.goal=1e-3;
net=init(net);
pause
clc
elseif(choice==2)
echo on
clc
%建立一个前向神经网络
net=newff(minmax(P),[20,1],{'tansig','purelin'},'trainbr');
pause
clc
net.trainParam.show=10
net.trainParam.epochs=5000;
randn('seed',192736547);
net=init(net);
pause
clc
end
%调用相应算法训练BP网络
[net,tr]=train(net,P,T);
pause
clc
%对BP网络进行仿真
A=sim(net,P)
E=T-A;
MSE=mse(E);
pause
clc
%绘制结果曲线
close all;
plot(P,A,P,T,'+',P,sin(2*pi*P),':');
pause
clc
echo off
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -