📄 dsin.txt
字号:
3 288 # load.der(w)
0 0 0 0
6 388 # phiload.flange_a.tau
0 1 0 0
6 262 # phiload.outPort.n
0 0 0 0
6 292 # phiload.outPort.signal[1]
0 1 0 0
6 258 # positionerror.n
0 1 0 0
6 262 # positionerror.inPort1.n
0 1 0 0
6 262 # positionerror.inPort2.n
0 1 0 0
6 262 # positionerror.outPort.n
0 0 0 0
6 292 # positionerror.outPort.signal[1]
0 1 0 0
6 262 # controller.inPort.n
0 1 0 0
6 262 # controller.outPort.n
0 0 0 0
6 292 # controller.outPort.signal[1]
0 0 0 0
6 288 # controller.y
-1 1 0 0
1 312 # controller.k
-1 5.000000000000000E-001 1.000000000000000E-060 1.000000000000000E+100
1 312 # controller.Ti
-1 1.000000000000000E-001 0 1.000000000000000E+100
1 312 # controller.Td
-1 10 1.000000000000000E-060 1.000000000000000E+100
1 312 # controller.Nd
-1 1 0 0
1 312 # controller.P.k[1]
0 1 0 0
6 262 # controller.P.inPort.n
0 1 0 0
6 262 # controller.P.outPort.n
0 0 0 0
6 292 # controller.P.outPort.signal[1]
0 1 0 0
6 258 # controller.I.n
0 1 0 0
6 262 # controller.I.inPort.n
0 1 0 0
6 262 # controller.I.outPort.n
0 0 0 0
6 292 # controller.I.outPort.signal[1]
-1 0 0 0
2 312 # controller.I.y[1]
0 0 0 0
3 288 # controller.I.der(y[1])
0 0 0 0
6 288 # controller.I.k[1]
0 0 0 0
6 256 # controller.I.y0[1]
0 1 0 0
6 258 # controller.D.n
0 1 0 0
6 262 # controller.D.inPort.n
0 1 0 0
6 262 # controller.D.outPort.n
0 0 0 0
6 292 # controller.D.outPort.signal[1]
0 0 0 0
6 288 # controller.D.y[1]
0 0 0 0
6 288 # controller.D.k[1]
0 1.000000000000000E-060 1.000000000000000E-060 1.000000000000000E+100
6 288 # controller.D.T[1]
-1 0 0 0
2 312 # controller.D.x[1]
0 0 0 0
3 288 # controller.D.der(x[1])
0 0 0 0
6 1312 # controller.D.p_k[1]
0 0 0 0
6 1312 # controller.D.p_T[1]
0 0 0 0
6 288 # controller.Gain.k[1]
0 1 0 0
6 262 # controller.Gain.inPort.n
0 1 0 0
6 262 # controller.Gain.outPort.n
0 0 0 0
6 292 # controller.Gain.outPort.signal[1]
-1 1 0 0
1 312 # controller.Add.k1
-1 1 0 0
1 312 # controller.Add.k2
-1 1 0 0
1 312 # controller.Add.k3
0 1 0 0
6 258 # controller.Add.n
0 1 0 0
6 262 # controller.Add.inPort1.n
0 1 0 0
6 262 # controller.Add.inPort2.n
0 1 0 0
6 262 # controller.Add.inPort3.n
0 1 0 0
6 262 # controller.Add.outPort.n
0 0 0 0
6 292 # controller.Add.outPort.signal[1]
0 1 1 1.000000000000000E+100
6 258 # Step1.nout
0 1 0 0
6 262 # Step1.outPort.n
0 0 0 0
6 356 # Step1.outPort.signal[1]
0 0 0 0
6 352 # Step1.y[1]
-1 0 0 0
1 312 # Step1.offset[1]
-1 0 0 0
1 312 # Step1.startTime[1]
-1 1 0 0
1 312 # Step1.height[1]
0 0 0 0
6 1312 # Step1.p_height[1]
0 0 0 0
6 1312 # Step1.p_offset[1]
0 0 0 0
6 1312 # Step1.p_startTime[1]
# Matrix with 6 columns defining the initial value calculation
# (columns 5 and 6 are not utilized for the calculation but are
# reported by dymosim via dymosim -i for user convenience):
#
# column 1: Type of initial value
# = -2: special case: for continuing simulation (column 2 = value)
# = -1: fixed value (column 2 = fixed value)
# = 0: free value, i.e., no restriction (column 2 = initial value)
# > 0: desired value (column 1 = weight for optimization
# column 2 = desired value)
# use weight=1, since automatic scaling usually
# leads to equally weighted terms
# column 2: fixed, free or desired value according to column 1.
# column 3: Minimum value (ignored, if Minimum >= Maximum).
# column 4: Maximum value (ignored, if Minimum >= Maximum).
# Minimum and maximum restrict the search range in initial
# value calculation. They might also be used for scaling.
# column 5: Category of variable.
# = 1: parameter.
# = 2: state.
# = 3: state derivative.
# = 4: output.
# = 5: input.
# = 6: auxiliary variable.
# column 6: Data type of variable.
# = 0: real.
# = 1: boolean.
# = 2: integer.
#
# Initial values are calculated according to the following procedure:
#
# - If parameters, states and inputs are FIXED, and other variables
# are FREE, no special action takes place (default setting).
#
# - If there are only FIXED and FREE variables and the number of
# FREE parameters, states and inputs is IDENTICAL to the number of
# FIXED state derivatives, outputs and auxiliary variables, a non-linear
# equation is solved to determine a consistent set of initial conditions.
#
# - In all other cases the following optimization problem is solved:
# min( sum( weight(i)*( (value(i) - DESIRED(i))/scale(i) )^2 ) )
# under the constraint that the differential equation is fulfilled
# at the initial time. In most cases weight(i)=1 is sufficient, due
# to the automatic scaling (if DESIRED(i) is not close to zero,
# scale(i) = DESIRED(i). Otherwise, the scaling is based on the
# nominal value (and maybe minimum and maximum values given in
# column 3 and 4). If these values are zero, scale(i)=1 is used).
#
char initialDescription(96,81)
Radius of load [m]
Mass of load [kg]
Potential at the pin [V]
Dimension of signal vector
Potential at the pin [V]
Current flowing into the pin [A]
Voltage drop between the two pins (= p.v - n.v) [V]
Potential at the pin [V]
Resistance [Ohm]
Voltage drop between the two pins (= p.v - n.v) [V]
Current flowing from pin p to pin n [A]
der(Current flowing from pin p to pin n) [A/s]
Inductance [H]
Transformation coefficient [N.m/A]
Voltage drop between the two pins [V]
Potential at the pin [V]
Dimension of signal vector
Absolute rotation angle of component (= flange_a.phi = flange_b.phi) [rad]
der(Absolute rotation angle of component (= flange_a.phi = flange_b.phi)) [rad/s]
Cut torque in the flange [N.m]
Moment of inertia [kg.m2]
der(Absolute angular velocity of component) [rad/s/s]
Cut torque in the flange [N.m]
Cut torque in the flange [N.m]
[N.m]
Absolute rotation angle of flange [rad]
Cut torque in the flange [N.m]
Transmission ratio (flange_a.phi/flange_b.phi)
Absolute rotation angle of component (= flange_a.phi = flange_b.phi) [rad]
der(Absolute rotation angle of component (= flange_a.phi = flange_b.phi)) [rad/s]
Cut torque in the flange [N.m]
Moment of inertia [kg.m2]
Absolute angular velocity of component [rad/s]
der(Absolute angular velocity of component) [rad/s/s]
Cut torque in the flange [N.m]
Dimension of signal vector
Real output signals
size of input and feedback signal
Dimension of signal vector
Dimension of signal vector
Dimension of signal vector
Real output signals
Dimension of signal vector
Dimension of signal vector
Real output signals
Gain
Time Constant of Integrator [s]
Time Constant of Derivative block [s]
The higher Nd, the more ideal the derivative block
Gain vector multiplied element-wise with input vector
Dimension of signal vector
Dimension of signal vector
Real output signals
Number of inputs (= number of outputs)
Dimension of signal vector
Dimension of signal vector
Real output signals
Output signals
der(Output signals)
Integrator gains
Start values of integrators
Number of inputs (= number of outputs)
Dimension of signal vector
Dimension of signal vector
Real output signals
Output signals
Gains
Time constants (T>0 required; T=0 is ideal derivative block) [s]
State of block
der(State of block)
Gain vector multiplied element-wise with input vector
Dimension of signal vector
Dimension of signal vector
Real output signals
Gain of upper input
Gain of middle input
Gain of lower input
Dimension of input and output vectors.
Dimension of signal vector
Dimension of signal vector
Dimension of signal vector
Dimension of signal vector
Real output signals
Number of outputs
Dimension of signal vector
Real output signals
offset of output signal
output = offset for time < startTime [s]
Heights of steps
[s]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -