📄 an018_sw.c
字号:
//-----------------------------------------------------------------------------
// AN018_SW.c
//-----------------------------------------------------------------------------
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// AUTH: BW
//
// This program outputs the C8051Fxxx die temperature out the hardware
// UART at 115.2kbps. Assumes an 18.432MHz crystal is attached between
// XTAL1 and XTAL2.
//
// The ADC is configured to look at the on-chip temp sensor. The sampling
// rate of the ADC is determined by the constant <SAMPLE_RATE>, which is given
// in Hz. The maximum value of <SAMPLE_RATE> is limited to ~86kHz due to
// the choice of 18.432MHz crystal (SAR clock = SYSCLK / 16 = 1.152MHz. One
// conversion takes 16 SAR clocks --> 72kHz sampling rate).
//
// The ADC End of Conversion Interrupt Handler retrieves the sample
// from the ADC and adds it to a running accumulator. Every 256
// samples, the ADC updates and stores its result in the global variable
// <result>. The sampling technique of adding a set of values and
// decimating them (posting results every 256th sample) is called accumulate
// and dump. It is easy to implement and requires very few resources.
//
// For each power of 4, you gain 1 bit of effective resolution.
// For a factor of 256, gain you 4 bits of resolution: 4^4 = 256.
// Also, to properly scale the result back to 16-bits, perform a right
// shift of 4 bits.
//
// Target: C8051F00x or C8051F01x
// Tool chain: KEIL C51 6.03 / KEIL C51 EVAL version
//
//-----------------------------------------------------------------------------
// Includes
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <c8051f000.h> // SFR declarations
//-----------------------------------------------------------------------------
// 16-bit SFR Definitions for F00x, F01x
//-----------------------------------------------------------------------------
sfr16 DP = 0x82; // data pointer
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 T2 = 0xcc; // Timer2
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd5; // DAC1 data
//-----------------------------------------------------------------------------
// Global CONSTANTS
//-----------------------------------------------------------------------------
#define SYSCLK 18432000 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps
#define SAMPLE_RATE 100000 // Sample frequency in Hz
#define LED P1.6 // LED=1 means ON
//-----------------------------------------------------------------------------
// Function PROTOTYPES
//-----------------------------------------------------------------------------
void SYSCLK_Init (void);
void PORT_Init (void);
void UART_Init (void);
void ADC_Init (void);
void TIMER3_Init (int counts);
void ADC_ISR (void);
//-----------------------------------------------------------------------------
// Global VARIABLES
//-----------------------------------------------------------------------------
long result; // Output result from oversmapling and
// averaging 256 samples from the ADC for
// 16-bit measurement resolution
//-----------------------------------------------------------------------------
// MAIN Routine
//-----------------------------------------------------------------------------
void main (void) {
long temp_copy;
int temp_int; // integer portion of temperature
int temp_frac; // fractional portion of temperature (in
// hundredths of a degree)
WDTCN = 0xde; // disable watchdog timer
WDTCN = 0xad;
SYSCLK_Init (); // initialize oscillator
PORT_Init (); // initialize crossbar and GPIO
UART_Init (); // initialize UART
TIMER3_Init (SYSCLK/SAMPLE_RATE); // initialize Timer3 to overflow at
// sample rate
ADC_Init (); // init ADC
ADCEN = 1; // enable ADC
result = 0L; // initialize temperature variable
EA = 1; // Enable global interrupts
while (1) {
temp_copy = result; // Get most recent sample to convert
// the ADC code to a temperature
temp_copy -= 0xa381; // correct offset to 0deg, 0V
temp_copy *= 0x01a9; // 2.86mV/degree C
temp_copy *= 100; // convert result to 100ths of a degree C
temp_copy = temp_copy >> 16; // divide by 2^16
temp_int = temp_copy / 100; // Seperate integer and fractional components
temp_frac = temp_copy - (100 * temp_int);
printf ("Temperature is %d.%d\n", (int) temp_int, (int) temp_frac);
}
}
//-----------------------------------------------------------------------------
// Initialization Subroutines
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// SYSCLK_Init
//-----------------------------------------------------------------------------
//
// This routine initializes the system clock to use an 18.432MHz crystal
// as its clock source.
//
void SYSCLK_Init (void)
{
int i; // delay counter
OSCXCN = 0x67; // start external oscillator with
// 18.432MHz crystal
for (i=0; i < 256; i++) ; // XTLVLD blanking interval (>1ms)
while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK
// source and enable missing clock
// detector
}
//-----------------------------------------------------------------------------
// PORT_Init
//-----------------------------------------------------------------------------
//
// Configure the Crossbar and GPIO ports
//
void PORT_Init (void)
{
XBR0 = 0x07; // Enable I2C, SPI, and UART
XBR1 = 0x00;
XBR2 = 0x40; // Enable crossbar and weak pull-ups
PRT0CF |= 0xff; // enable all outputs on P0 as push-pull
// push-pull; let xbar configure pins
// as inputs as necessary
PRT1CF |= 0x40; // enable P1.6 (LED) as push-pull output
}
//-----------------------------------------------------------------------------
// PORT_Init
//-----------------------------------------------------------------------------
//
// Configure the UART using Timer1, for <baudrate> and 8-N-1.
//
void UART_Init (void)
{
SCON = 0x50; // SCON: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = -(SYSCLK/BAUDRATE/16); // set Timer1 reload value for baudrate
TR1 = 1; // start Timer1
CKCON |= 0x10; // Timer1 uses sysclk as time base
PCON |= 0x80; // SMOD = 1
TI = 1; // Indicate TX ready
}
//-----------------------------------------------------------------------------
// ADC_Init
//-----------------------------------------------------------------------------
//
// Configure A/D converter to use Timer3 overflows as conversion source, to
// generate an interrupt on conversion complete, and to use right-justified
// output mode. Enables ADC end of conversion interrupt. Leaves ADC disabled.
//
void ADC_Init (void)
{
ADC0CN = 0x04; // ADC disabled; normal tracking
// mode; ADC conversions are initiated
// on overflow of Timer3; ADC data is
// right-justified
REF0CN = 0x07; // enable temp sensor, on-chip VREF,
// and VREF output buffer
AMX0SL = 0x0f; // Select TEMP sens as ADC mux output
ADC0CF = 0x61; // ADC conversion clock = sysclk/8
EIE2 |= 0x02; // enable ADC interrupts
}
//-----------------------------------------------------------------------------
// TIMER3_Init
//-----------------------------------------------------------------------------
//
// Configure Timer3 to auto-reload at interval specified by <counts> (no
// interrupt generated) using SYSCLK as its time base.
//
void TIMER3_Init (int counts)
{
TMR3CN = 0x02; // Stop Timer3; Clear TF3;
// use SYSCLK as timebase
TMR3RL = -counts; // Init reload values
TMR3 = 0xffff; // set to reload immediately
EIE2 &= ~0x01; // disable Timer3 interrupts
TMR3CN |= 0x04; // start Timer3
}
//-----------------------------------------------------------------------------
// Interrupt Service Routines
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// ADC_ISR
//-----------------------------------------------------------------------------
//
// ADC end-of-conversion ISR
// Here we take the ADC sample, add it to a running total <accumulator>, and
// decrement our local decimation counter <int_dec>. When <int_dec> reaches
// zero, we calculate the new value of the global variable <result>,
// which stores the accumulated ADC result.
//
void ADC_isr (void) interrupt 15
{
static unsigned int_dec=256; // integrate/decimate counter
// we post a new result when
// int_dec = 0
static long accumulator=0L; // heres where we integrate the
// ADC samples
ADCINT = 0; // clear ADC conversion complete
// indicator
accumulator += ADC0; // read ADC value and add to running
// total
int_dec--; // update decimation counter
if (int_dec == 0) { // if zero, then decimate
int_dec = 256; // reset counter
result = accumulator >> 4; // Shift to perform the divide operation
accumulator = 0L; // dump accumulator
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -