📄 spi_ee_int1.c
字号:
//-----------------------------------------------------------------------------
// SPI_EE_Int1.c
//-----------------------------------------------------------------------------
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// AUTH: BW
// DATE: 14 SEP 01
//
// This program shows an example of how to interface to an SPI EEPROM using
// the SPI0 interface in interrupt-mode. The SPI EEPROM used here is a
// Microchip 25LC320 (4k bytes). The hardware connections are as follows:
//
// P0.0 - TX -- UART used for display/testing purposes
// P0.1 - RX
//
// P0.2 - SCK (connected to SCK on EEPROM)
// P0.3 - MISO (connected to SI on EEPROM)
// P0.4 - MOSI (connected to SO on EEPROM)
// P0.5 - NSS (unconnected, but pulled high by on-chip pull-up resistor)
//
// P1.7 - EE_CS (connected to /CS on EEPROM)
//
// Assumes an 22.1184MHz crystal is attached between XTAL1 and XTAL2.
//
// In this example, the attached SPI device is loaded with a test pattern.
// The EEPROM contents are then verified with the test pattern. If the test
// pattern is verified with no errors, the LED blinks on operation complete.
// Otherwise, the LED stays off. Progress can also be monitored by a terminal
// connected to UART0 operating at 115.2kbps.
//
// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//
//-----------------------------------------------------------------------------
// Includes
//-----------------------------------------------------------------------------
#include <c8051f020.h> // SFR declarations
#include <stdio.h>
//-----------------------------------------------------------------------------
// 16-bit SFR Definitions for 'F00x
//-----------------------------------------------------------------------------
sfr16 DP = 0x82; // data pointer
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 T2 = 0xcc; // Timer2
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd5; // DAC1 data
//-----------------------------------------------------------------------------
// Global CONSTANTS
//-----------------------------------------------------------------------------
#define TRUE 1
#define FALSE 0
#define SYSCLK 22118400 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps
sbit LED = P1^6; // LED='1' means ON
sbit EE_CS = P1^7; // EEPROM CS signal
#define EE_SIZE 4096 // EEPROM size in bytes
#define EE_READ 0x03 // EEPROM Read command
#define EE_WRITE 0x02 // EEPROM Write command
#define EE_WRDI 0x04 // EEPROM Write disable command
#define EE_WREN 0x06 // EEPROM Write enable command
#define EE_RDSR 0x05 // EEPROM Read status register
#define EE_WRSR 0x01 // EEPROM Write status register
//-----------------------------------------------------------------------------
// Function PROTOTYPES
//-----------------------------------------------------------------------------
void SYSCLK_Init (void);
void PORT_Init (void);
void UART0_Init (void);
void SPI0_Init (void);
void Timer0_Init (void);
void Timer0_ms (unsigned ms);
unsigned char EE_Read (unsigned Addr);
void EE_Write (unsigned Addr, unsigned char value);
//-----------------------------------------------------------------------------
// Global VARIABLES
//-----------------------------------------------------------------------------
bit EE_Ready = FALSE; // semaphore for SPI0/EEPROM
bit EE_WR = FALSE; // TRUE = write; FALSE = read
unsigned EE_Addr = 0x0000; // EEPROM address
unsigned char EE_Data = 0x00; // EEPROM data
//-----------------------------------------------------------------------------
// MAIN Routine
//-----------------------------------------------------------------------------
void main (void) {
unsigned test_addr; // address of EEPROM byte
unsigned char test_byte;
WDTCN = 0xde; // disable watchdog timer
WDTCN = 0xad;
SYSCLK_Init (); // initialize oscillator
PORT_Init (); // initialize crossbar and GPIO
UART0_Init (); // initialize UART0
Timer0_Init (); // initialize Timer0
SPI0_Init (); // initialize SPI0
EA = 1; // enable global interrupts
// fill EEPROM with 0xFF's
LED = 1;
for (test_addr = 0; test_addr < EE_SIZE; test_addr++) {
test_byte = 0xff;
EE_Write (test_addr, test_byte);
// print status to UART0
if ((test_addr % 16) == 0) {
printf ("\nwriting 0x%04x: %02x ", test_addr, (unsigned) test_byte);
} else {
printf ("%02x ", (unsigned) test_byte);
}
}
// verify EEPROM with 0xFF's
LED = 0;
for (test_addr = 0; test_addr < EE_SIZE; test_addr++) {
test_byte = EE_Read (test_addr);
// print status to UART0
if ((test_addr % 16) == 0) {
printf ("\nverifying 0x%04x: %02x ", test_addr, (unsigned) test_byte);
} else {
printf ("%02x ", (unsigned) test_byte);
}
if (test_byte != 0xFF) {
printf ("Error at %u\n", test_addr);
while (1); // stop here on error
}
}
// fill EEPROM memory with LSB of EEPROM address.
LED = 1;
for (test_addr = 0; test_addr < EE_SIZE; test_addr++) {
test_byte = test_addr & 0xff;
EE_Write (test_addr, test_byte);
// print status to UART0
if ((test_addr % 16) == 0) {
printf ("\nwriting 0x%04x: %02x ", test_addr, (unsigned) test_byte);
} else {
printf ("%02x ", (unsigned) test_byte);
}
}
// verify EEPROM memory with LSB of EEPROM address
LED = 0;
for (test_addr = 0; test_addr < EE_SIZE; test_addr++) {
test_byte = EE_Read (test_addr);
// print status to UART0
if ((test_addr % 16) == 0) {
printf ("\nverifying 0x%04x: %02x ", test_addr, (unsigned) test_byte);
} else {
printf ("%02x ", (unsigned) test_byte);
}
if (test_byte != (test_addr & 0xFF)) {
printf ("Error at %u\n", test_addr);
while (1); // stop here on error
}
}
ET0 = 0; // disable Timer0 interrupts
while (1) { // Flash LED when done
Timer0_ms (100);
LED = ~LED;
}
}
//-----------------------------------------------------------------------------
// Subroutines
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// SYSCLK_Init
//-----------------------------------------------------------------------------
//
// This routine initializes the system clock to use an 22.1184 MHz crystal
// as its clock source.
//
void SYSCLK_Init (void)
{
int i; // delay counter
OSCXCN = 0x67; // start external oscillator with
// 22.1184 MHz crystal
for (i=0; i < 256; i++) ; // Wait for osc. to start up
while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK
// source and enable missing clock
// detector
}
//-----------------------------------------------------------------------------
// PORT_Init
//-----------------------------------------------------------------------------
//
// Configure the Crossbar and GPIO ports
//
void PORT_Init (void)
{
XBR0 |= 0x06; // Enable SPI0 and UART0
XBR1 = 0x00;
XBR2 = 0x40; // Enable crossbar and weak pull-ups
P0MDOUT |= 0x15; // enable P0.0 (TX), P0.2 (SCK), and
// P0.4 (MOSI) as push-pull outputs
P1MDOUT |= 0xC0; // enable P1.6 (LED) and P1.7 (EE_CS)
// as push-pull outputs
}
//-----------------------------------------------------------------------------
// SPI0_Init
//-----------------------------------------------------------------------------
//
// Configure SPI0 for 8-bit, 2MHz SCK, Master mode, interrupt operation, data
// sampled on 1st SCK rising edge. SPI0 interrupts are enabled here
//
void SPI0_Init (void)
{
SPI0CFG = 0x07; // data sampled on 1st SCK rising edge
// 8-bit data words
SPI0CN = 0x03; // Master mode; SPI enabled; flags
// cleared
SPI0CKR = SYSCLK/2/2000000; // SPI clock <= 2MHz (limited by
// EEPROM spec.)
EE_Ready = TRUE; // post SPI0/EEPROM available
EIE1 |= 0x01; // enable SPI0 interrupts
}
//-----------------------------------------------------------------------------
// UART0_Init
//-----------------------------------------------------------------------------
//
// Configure the UART0 using Timer1, for <baudrate> and 8-N-1.
//
void UART0_Init (void)
{
SCON0 = 0x50; // SCON0: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = -(SYSCLK/BAUDRATE/16); // set Timer1 reload value for baudrate
TR1 = 1; // start Timer1
CKCON |= 0x10; // Timer1 uses SYSCLK as time base
PCON |= 0x80; // SMOD00 = 1 (disable baud rate
// divide-by-two)
TI0 = 1; // Indicate TX0 ready
}
//-----------------------------------------------------------------------------
// Timer0_Init
//-----------------------------------------------------------------------------
//
// Configure Timer0 for 16-bit interrupt mode.
//
void Timer0_Init (void)
{
TCON &= ~0x30; // STOP Timer0 and clear overflow flag
TMOD &= ~0x0f; // configure Timer0 to 16-bit mode
TMOD |= 0x01;
CKCON |= 0x08; // Timer0 counts SYSCLKs
}
//-----------------------------------------------------------------------------
// Timer0_ms
//-----------------------------------------------------------------------------
//
// Configure Timer0 to delay <ms> milliseconds before returning.
//
void Timer0_ms (unsigned ms)
{
unsigned i; // millisecond counter
TCON &= ~0x30; // STOP Timer0 and clear overflow flag
TMOD &= ~0x0f; // configure Timer0 to 16-bit mode
TMOD |= 0x01;
CKCON |= 0x08; // Timer0 counts SYSCLKs
for (i = 0; i < ms; i++) { // count milliseconds
TR0 = 0; // STOP Timer0
TH0 = (-SYSCLK/1000) >> 8; // set Timer0 to overflow in 1ms
TL0 = -SYSCLK/1000;
TR0 = 1; // START Timer0
while (TF0 == 0); // wait for overflow
TF0 = 0; // clear overflow indicator
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -