⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vrls.m

📁 非线性自适应滤波器MATLAB程序
💻 M
字号:
%VRLS Volterra RLS algorithm%%   'ifile.mat' - input file containing:%      Nr - members of ensemble%      dim - iterations%      Sx - standard deviation of input%      Sn - standard deviation of measurement noise%      lambda - exponential weighting factor%      %   'ofile.mat' - output file containing:%      MSE - mean-square errorclear all		% clear memoryload ifile;		% read input variablesfor j=1:Nr   n=Sn*randn(dim,1);        % noise at system output    x=Sx*randn(dim,1);       % input signal    xl1=zeros(dim,1); xl2=xl1;   xl1(2:dim)=x(1:dim-1); xl2(3:dim)=x(1:dim-2);   d=zeros(dim,1);   d=-.76*x-xl1+xl2+.5*x.^2+2*x.*xl2-1.6*xl1.^2+1.2*xl2.^2+.8*xl1.*xl2+n; ...     % unknown system output   w=zeros(9,dim);           % initial coefficient vector   uxl=[x xl1 xl2 x.^2 x.*xl1 x.*xl2 xl1.^2 xl1.*xl2 xl2.^2]'; % input vectors      Sd=eye(9);   for i=1:dim      elinha(i)=d(i)-w(:,i)'*uxl(:,i)+n(i);  % error sample      psi=Sd*uxl(:,i);      Sd=(1/lambda)*(Sd-(psi*psi')/(lambda+psi'*uxl(:,i)));      w(:,i+1)=w(:,i)+elinha(i)*Sd*uxl(:,i); % new coefficient vector      y(i)=w(:,i+1)'*uxl(:,i);               % output sample      e(i)=d(i)-y(i)+n(i);   end   mse(j,:)=e.^2;endMSE=mean(mse);save ofile MSE;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -