📄 svm.cpp
字号:
else { alpha[i] = min(1.0,sum_neg); sum_neg -= alpha[i]; } double *zeros = new double[l]; for(i=0;i<l;i++) zeros[i] = 0; Solver_NU s; s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, alpha, 1.0, 1.0, param->eps, si, param->shrinking); double r = si->r; //info("C = %f\n",1/r); for(i=0;i<l;i++) alpha[i] *= y[i]/r; si->rho /= r; si->obj /= (r*r); si->upper_bound_p = 1/r; si->upper_bound_n = 1/r; delete[] y; delete[] zeros;}static void solve_one_class( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si){ int l = prob->l; double *zeros = new double[l]; schar *ones = new schar[l]; int i; int n = (int)(param->nu*prob->l); // # of alpha's at upper bound for(i=0;i<n;i++) alpha[i] = 1; alpha[n] = param->nu * prob->l - n; for(i=n+1;i<l;i++) alpha[i] = 0; for(i=0;i<l;i++) { zeros[i] = 0; ones[i] = 1; } Solver s; s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones, alpha, 1.0, 1.0, param->eps, si, param->shrinking); delete[] zeros; delete[] ones;}static void solve_epsilon_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si){ int l = prob->l; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; for(i=0;i<l;i++) { alpha2[i] = 0; linear_term[i] = param->p - prob->y[i]; y[i] = 1; alpha2[i+l] = 0; linear_term[i+l] = param->p + prob->y[i]; y[i+l] = -1; } Solver s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, param->C, param->C, param->eps, si, param->shrinking); double sum_alpha = 0; for(i=0;i<l;i++) { alpha[i] = alpha2[i] - alpha2[i+l]; sum_alpha += fabs(alpha[i]); } //info("nu = %f\n",sum_alpha/(param->C*l)); delete[] alpha2; delete[] linear_term; delete[] y;}static void solve_nu_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si){ int l = prob->l; double C = param->C; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; double sum = C * param->nu * l / 2; for(i=0;i<l;i++) { alpha2[i] = alpha2[i+l] = min(sum,C); sum -= alpha2[i]; linear_term[i] = - prob->y[i]; y[i] = 1; linear_term[i+l] = prob->y[i]; y[i+l] = -1; } Solver_NU s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking); //info("epsilon = %f\n",-si->r); for(i=0;i<l;i++) alpha[i] = alpha2[i] - alpha2[i+l]; delete[] alpha2; delete[] linear_term; delete[] y;}//// decision_function//struct decision_function{ double *alpha; double rho; };decision_function svm_train_one( const svm_problem *prob, const svm_parameter *param, double Cp, double Cn){ double *alpha = Malloc(double,prob->l); Solver::SolutionInfo si; switch(param->svm_type) { case C_SVC: solve_c_svc(prob,param,alpha,&si,Cp,Cn); break; case NU_SVC: solve_nu_svc(prob,param,alpha,&si); break; case ONE_CLASS: solve_one_class(prob,param,alpha,&si); break; case EPSILON_SVR: solve_epsilon_svr(prob,param,alpha,&si); break; case NU_SVR: solve_nu_svr(prob,param,alpha,&si); break; } //info("obj = %f, rho = %f\n",si.obj,si.rho); // output SVs// int nSV = 0;// int nBSV = 0;// for(int i=0;i<prob->l;i++)// {// if(fabs(alpha[i]) > 0)// {// ++nSV;// if(prob->y[i] > 0)// {// if(fabs(alpha[i]) >= si.upper_bound_p)// ++nBSV;// }// else// {// if(fabs(alpha[i]) >= si.upper_bound_n)// ++nBSV;// }// }// }// info("nSV = %d, nBSV = %d\n",nSV,nBSV); decision_function f; f.alpha = alpha; f.rho = si.rho; return f;}//// svm_model//struct svm_model{ svm_parameter param; // parameter int nr_class; // number of classes, = 2 in regression/one class svm int l; // total #SV svm_node **SV; // SVs (SV[l]) double **sv_coef; // coefficients for SVs in decision functions (sv_coef[n-1][l]) double *rho; // constants in decision functions (rho[n*(n-1)/2]) // for classification only int *label; // label of each class (label[n]) int *nSV; // number of SVs for each class (nSV[n]) // nSV[0] + nSV[1] + ... + nSV[n-1] = l // XXX int free_sv; // 1 if svm_model is created by svm_load_model // 0 if svm_model is created by svm_train};const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param){ // svm_type int svm_type = param->svm_type; if(svm_type != C_SVC && svm_type != NU_SVC && svm_type != ONE_CLASS && svm_type != EPSILON_SVR && svm_type != NU_SVR) return "unknown svm type"; // kernel_type int kernel_type = param->kernel_type; if(kernel_type != LINEAR && kernel_type != POLY && kernel_type != RBF && kernel_type != SIGMOID && kernel_type != R) return "unknown kernel type"; // cache_size,eps,C,nu,p,shrinking if(param->cache_size <= 0) return "cache_size <= 0"; if(param->eps <= 0) return "eps <= 0"; if(svm_type == C_SVC || svm_type == EPSILON_SVR || svm_type == NU_SVR) if(param->C <= 0) return "C <= 0"; if(svm_type == NU_SVC || svm_type == ONE_CLASS || svm_type == NU_SVR) if(param->nu < 0 || param->nu > 1) return "nu < 0 or nu > 1"; if(svm_type == EPSILON_SVR) if(param->p < 0) return "p < 0"; if(param->shrinking != 0 && param->shrinking != 1) return "shrinking != 0 and shrinking != 1"; // check whether nu-svc is feasible if(svm_type == NU_SVC) { int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int,max_nr_class); int *count = Malloc(int,max_nr_class); int i; for(i=0;i<l;i++) { int this_label = (int)prob->y[i]; int j; for(j=0;j<nr_class;j++) if(this_label == label[j]) { ++count[j]; break; } if(j == nr_class) { if(nr_class == max_nr_class) { max_nr_class *= 2; label = (int *)realloc(label,max_nr_class*sizeof(int)); count = (int *)realloc(count,max_nr_class*sizeof(int)); } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } for(i=0;i<nr_class;i++) { int n1 = count[i]; for(int j=i+1;j<nr_class;j++) { int n2 = count[j]; if(param->nu*(n1+n2)/2 > min(n1,n2)) { free(label); free(count); return "specified nu is infeasible"; } } } } return NULL; }extern "C" {#include <R.h>#include <Rinternals.h>#include <stdio.h> struct svm_node ** sparsify (double *x, int r, int c) { struct svm_node** sparse; int i, ii, count; sparse = (struct svm_node **) malloc (r * sizeof(struct svm_node *)); for (i = 0; i < r; i++) { /* determine nr. of non-zero elements */ for (count = ii = 0; ii < c; ii++) if (x[i * c + ii] != 0) count++; /* allocate memory for column elements */ sparse[i] = (struct svm_node *) malloc ((count + 1) * sizeof(struct svm_node)); /* set column elements */ for (count = ii = 0; ii < c; ii++) if (x[i * c + ii] != 0) { sparse[i][count].index = ii; sparse[i][count].value = x[i * c + ii]; count++; } /* set termination element */ sparse[i][count].index = -1; } return sparse; } void solve_smo(const svm_problem *prob, const svm_parameter* param, double *alpha, Solver::SolutionInfo* si, double C, double *linear_term) { int l = prob->l; int i; switch(param->svm_type) { case C_SVC: { double Cp,Cn; double *minus_ones = new double[l]; schar *y = new schar[l]; for(i=0;i<l;i++) { alpha[i] = 0; minus_ones[i] = -1; if(prob->y[i] > 0) y[i] = +1; else y[i]=-1; } if(param->nr_weight > 0) { Cp = C*param->weight[0]; Cn = C*param->weight[1]; } else Cp = Cn = C; Solver s; //have to weight cost parameter for multiclass. problems s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y, alpha, Cp, Cn, param->eps, si, param->shrinking); delete[] minus_ones; delete[] y; } break; case NU_SVC: { schar *y = new schar[l]; double nu = param->nu; double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;i<l;i++) if(prob->y[i]>0) { y[i] = +1; alpha[i] = min(1.0,sum_pos); sum_pos -= alpha[i]; } else { y[i] = -1; alpha[i] = min(1.0,sum_neg); sum_neg -= alpha[i]; } double *zeros = new double[l]; for(i=0;i<l;i++) zeros[i] = 0; Solver_NU s; s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, alpha, 1.0, 1.0, param->eps, si, param->shrinking); double r = si->r; //info("C = %f\n",1/r); for(i=0;i<l;i++) alpha[i] *= y[i]/r; si->rho /= r; si->obj /= (r*r); si->upper_bound_p = 1/r; si->upper_bound_n = 1/r; delete[] y; delete[] zeros; } break; case ONE_CLASS: { double *zeros = new double[l]; schar *ones = new schar[l]; int n = (int)(param->nu*l); // # of alpha's at upper bound // set initial alpha probably usefull for smo for(i=0;i<n;i++) alpha[i] = 1; alpha[n] = param->nu * l - n; for(i=n+1;i<l;i++) alpha[i] = 0; for(i=0;i<l;i++) { zeros[i] = 0; ones[i] = 1; } Solver s; s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones, alpha, 1.0, 1.0, param->eps, si, param->shrinking); delete[] zeros; delete[] ones; } break; case EPSILON_SVR: { double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; for(i=0;i<l;i++) { alpha2[i] = 0; linear_term[i] = param->p - prob->y[i]; y[i] = 1; alpha2[i+l] = 0; linear_term[i+l] = param->p + prob->y[i]; y[i+l] = -1; } Solver s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, param->C, param->C, param->eps, si, param->shrinking); double sum_alpha = 0; for(i=0;i<l;i++) { alpha[i] = alpha2[i] - alpha2[i+l]; sum_alpha += fabs(alpha[i]); } //info("nu = %f\n",sum_alpha/(param->C*l)); delete[] alpha2; delete[] linear_term; delete[] y; } break; case NU_SVR: { double C = param->C; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; double sum = C * param->nu * l / 2; for(i=0;i<l;i++) { alpha2[i] = alpha2[i+l] = min(sum,C); sum -= alpha2[i]; linear_term[i] = - prob->y[i]; y[i] = 1; linear_term[i+l] = prob->y[i]; y[i+l] = -1; } Solver_NU s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking); //info("epsilon = %f\n",-si->r); for(i=0;i<l;i++) alpha[i] = alpha2[i] - alpha2[i+l]; delete[] alpha2; delete[] linear_term; delete[] y; } break; } } SEXP smo_optim(SEXP x, SEXP r, SEXP c, SEXP y, SEXP linear_term, SEXP kernel_type, SEXP svm_type, SEXP cost, SEXP nu, SEXP eps, SEXP gamma, SEXP degree, SEXP coef0, SEXP weightlabels, SEXP weights, SEXP nweights, SEXP cache, SEXP epsilon, SEXP shrinking, SEXP expr, SEXP rho ) { SEXP alpha; double *alpha2; struct svm_parameter param; struct svm_problem prob; int i; const char* s; struct Solver::SolutionInfo si; param.svm_type = *INTEGER(svm_type); param.kernel_type = *INTEGER(kernel_type); param.degree = *REAL(degree); param.gamma = *REAL(gamma); param.coef0 = *REAL(coef0); param.cache_size = *REAL(cache); param.eps = *REAL(epsilon); param.C = *REAL(cost); param.nu = *REAL(nu); param.expr = expr; param.rho = rho; param.nr_weight = *INTEGER(nweights); if (param.nr_weight > 0) { param.weight = (double *) malloc (sizeof(double) * param.nr_weight); memcpy (param.weight, REAL(weights), param.nr_weight * sizeof(double)); param.weight_label = (int *) malloc (sizeof(int) * param.nr_weight); memcpy (param.weight_label, INTEGER(weightlabels), param.nr_weight * sizeof(int)); } param.p = *REAL(eps); param.shrinking = *INTEGER(shrinking); /* set problem */ prob.l = *INTEGER(r); // prob.y = (double *) malloc (sizeof(double) * prob.l); prob.y = REAL(y); prob.x = sparsify(REAL(x), *INTEGER(r), *INTEGER(c)); alpha2 = (double *) malloc (sizeof(double) * prob.l); s = svm_check_parameter(&prob, ¶m); if (s) { printf("%s",s); } else { solve_smo(&prob, ¶m, alpha2, &si, *REAL(cost), REAL(linear_term)); } PROTECT(alpha = allocVector(REALSXP, prob.l+1)); /* clean up memory */ if (param.nr_weight > 0) { free(param.weight); free(param.weight_label); } for (i = 0; i < prob.l; i++) {free (prob.x[i]); REAL(alpha)[i] = *(alpha2+i); } free (prob.x); REAL(alpha)[prob.l]=si.rho; free(alpha2); UNPROTECT(1); return alpha; } void smo_setup(double *x,int *r, int *c, double *y, double *linear_term, int *kernel_type, int *svm_type, double *cost, double *nu, double *gamma,double *eps,int degree, double *coef0, int *weightlabels, double *weights, int *nweights, double *cache, double *epsilon, int *shrinking, double *alpha, double *beta, char **error) { struct svm_parameter param; struct svm_problem prob; int i; const char* s; struct Solver::SolutionInfo si; /* set parameters */ param.svm_type = *svm_type; param.kernel_type = *kernel_type; param.degree = degree; param.gamma = *gamma; param.coef0 = *coef0; param.cache_size = *cache; param.eps = *eps; param.C = *cost; param.nu = *nu; param.nr_weight = *nweights; if (param.nr_weight > 0) { param.weight = (double *) malloc (sizeof(double) * param.nr_weight); memcpy (param.weight, weights, param.nr_weight * sizeof(double)); param.weight_label = (int *) malloc (sizeof(int) * param.nr_weight); memcpy (param.weight_label, weightlabels, param.nr_weight * sizeof(int)); } param.p = *epsilon; param.shrinking = *shrinking; /* set problem */ prob.l = *r; prob.y = y; prob.x = sparsify(x, *r, *c); s = svm_check_parameter(&prob, ¶m); if (s) { strcpy(*error, s); } else { /* call smo */ solve_smo(&prob, ¶m, alpha, &si,*cost, linear_term); } *beta = si.rho; /* clean up memory */ if (param.nr_weight > 0) { free(param.weight); free(param.weight_label); } for (i = 0; i < *r; i++) free (prob.x[i]); free (prob.x); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -