📄 kernelmatrix.rd
字号:
\name{kernelMatrix}\alias{kernelMatrix}\alias{kernelMult}\alias{kernelPol}\alias{kernelPol,kernel-method}\alias{kernelMatrix,kernel-method}\alias{kernelMult,kernel-method}\alias{kernelMatrix,rbfkernel,matrix-method}\alias{kernelMatrix,polykernel,matrix-method}\alias{kernelMatrix,vanillakernel,matrix-method}\alias{kernelMatrix,tanhkernel,matrix-method}\alias{kernelMult,rbfkernel,matrix-method}\alias{kernelMult,polykernel,matrix-method}\alias{kernelMult,tanhkernel,matrix-method}\alias{kernelMult,vanillakernel,matrix-method}\alias{kernelPol,rbfkernel,matrix-method}\alias{kernelPol,polykernel,matrix-method}\alias{kernelPol,tanhkernel,matrix-method}\alias{kernelPol,vanillakernel,matrix-method}\title{Kernel Matrix functions}\description{ \code{kernelMatrix} calculates the kernel matrix \eqn{K_{ij} = k(x_i,x_j)} or \eqn{K_{ij} = k(x_i,y_j)}.\cr \code{kernelPol} computes the quadratic kernel expression \eqn{H = z_i z_j k(x_i,x_j)}, \eqn{H = z_i k_j k(x_i,y_j)}.\cr \code{kernelMult} calculates the kernel expansion \eqn{f(x_i) = sum_{i=1}^m z k(x_i,x_j)} }\usage{\S4method{kernelMatrix}{kernel}(kernel, x, y = NULL)\S4method{kernelPol}{kernel}(kernel, x, y = NULL, z, k = NULL)\S4method{kernelMult}{kernel}(kernel, x, y = NULL, z, blocksize = 256)}\arguments{ \item{kernel}{the kernel function to be used to calculate the kernel matrix. This has to be a function of class \code{kernel}} \item{x}{a data matrix to be used to calculate the kernel matrix} \item{y}{second data matrix to calculate the kernel matrix} \item{z}{a suitable vector or matrix} \item{k}{a suitable vector or matrix} \item{blocksize}{the kernel expansion computations are done block wise to avoid storing the kernel matrix into memory. \code{blocksize} defines the size of the computational blocks.}}\details{ Common functions used during kernel based computations.\cr This \code{kernel} parameter can be set to any function, of class kernel, which computes a dot product between two vector arguments. kernlab provides the most popular kernel functions which can be initialized by using the following functions: \itemize{ \item \code{rbfdot} (Radial Basis kernel function) \item \code{polydot} (Polynomial kernel function) \item \code{vanilladot} (Linear kernel function) \item \code{tanhdot} (Hyperbolic tangent kernel function) } (see example.) } \value{ \code{kernelMatrix} returns a symmetric diagonal semi-definite matrix. \code{kernelPol} returns a matrix. \code{kernelMult}{usually returns a one-column matrix}}\author{Alexandros Karatzoglou \cr\email{alexandros.karatzoglou@ci.tuwien.ac.at}}\seealso{\code{\link{rbfdot}}, \code{\link{polydot}}, \code{\link{tanhdot}}, \code{\link{vanilladot}}}\examples{## use the spam datadata(spam)dt <- as.matrix(spam[c(10:20,3000:3010),-58])## initialize kernel function rbf <- rbfdot(sigma = 0.05)rbf## calculate kernel matrixkernelMatrix(rbf, dt)yt <- as.matrix(as.integer(spam[c(10:20,3000:3010),58]))yt[yt==2] <- -1## calculate the quadratic kernel expressionkernelPol(rbf, dt, ,yt)## calculate the kernel expansionkernelMult(rbf, dt, ,yt)}\keyword{algebra}\keyword{array}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -