⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kernelmatrix.rd

📁 这是核学习的一个基础软件包
💻 RD
字号:
\name{kernelMatrix}\alias{kernelMatrix}\alias{kernelMult}\alias{kernelPol}\alias{kernelPol,kernel-method}\alias{kernelMatrix,kernel-method}\alias{kernelMult,kernel-method}\alias{kernelMatrix,rbfkernel,matrix-method}\alias{kernelMatrix,polykernel,matrix-method}\alias{kernelMatrix,vanillakernel,matrix-method}\alias{kernelMatrix,tanhkernel,matrix-method}\alias{kernelMult,rbfkernel,matrix-method}\alias{kernelMult,polykernel,matrix-method}\alias{kernelMult,tanhkernel,matrix-method}\alias{kernelMult,vanillakernel,matrix-method}\alias{kernelPol,rbfkernel,matrix-method}\alias{kernelPol,polykernel,matrix-method}\alias{kernelPol,tanhkernel,matrix-method}\alias{kernelPol,vanillakernel,matrix-method}\title{Kernel Matrix functions}\description{  \code{kernelMatrix} calculates the kernel matrix \eqn{K_{ij} = k(x_i,x_j)} or \eqn{K_{ij} =    k(x_i,y_j)}.\cr  \code{kernelPol} computes the quadratic kernel expression  \eqn{H = z_i z_j    k(x_i,x_j)}, \eqn{H = z_i k_j k(x_i,y_j)}.\cr    \code{kernelMult} calculates the kernel expansion \eqn{f(x_i) =      sum_{i=1}^m z k(x_i,x_j)}  }\usage{\S4method{kernelMatrix}{kernel}(kernel, x, y = NULL)\S4method{kernelPol}{kernel}(kernel, x, y = NULL, z, k = NULL)\S4method{kernelMult}{kernel}(kernel, x, y = NULL, z, blocksize = 256)}\arguments{  \item{kernel}{the kernel function to be used to calculate the kernel    matrix.  This has to be a function of class \code{kernel}}  \item{x}{a data matrix to be used to calculate the kernel matrix}  \item{y}{second data matrix to calculate the kernel matrix}  \item{z}{a suitable vector or matrix}  \item{k}{a suitable vector or matrix}  \item{blocksize}{the kernel expansion computations are done block wise    to avoid storing the kernel matrix into memory. \code{blocksize}    defines the size of the computational blocks.}}\details{  Common functions used during kernel based computations.\cr  This \code{kernel} parameter can be set to any function, of class  kernel, which computes a dot product between two  vector arguments. kernlab provides the most popular kernel functions  which can be initialized by using the following  functions:    \itemize{      \item \code{rbfdot} (Radial Basis kernel function)      \item \code{polydot} (Polynomial kernel function)      \item \code{vanilladot} (Linear kernel function)      \item \code{tanhdot} (Hyperbolic tangent kernel function)    }  (see example.)  }  \value{  \code{kernelMatrix} returns a symmetric diagonal semi-definite matrix.  \code{kernelPol} returns a matrix.  \code{kernelMult}{usually returns a one-column matrix}}\author{Alexandros Karatzoglou \cr\email{alexandros.karatzoglou@ci.tuwien.ac.at}}\seealso{\code{\link{rbfdot}}, \code{\link{polydot}},  \code{\link{tanhdot}}, \code{\link{vanilladot}}}\examples{## use the spam datadata(spam)dt <- as.matrix(spam[c(10:20,3000:3010),-58])## initialize kernel function rbf <- rbfdot(sigma = 0.05)rbf## calculate kernel matrixkernelMatrix(rbf, dt)yt <- as.matrix(as.integer(spam[c(10:20,3000:3010),58]))yt[yt==2] <- -1## calculate the quadratic kernel expressionkernelPol(rbf, dt, ,yt)## calculate the kernel expansionkernelMult(rbf, dt, ,yt)}\keyword{algebra}\keyword{array}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -