⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rvm-class.rd

📁 这是核学习的一个基础软件包
💻 RD
字号:
\name{rvm-class}\docType{class}\alias{rvm-class}\alias{RVindex}\alias{mlike}\alias{nvar}\alias{RVindex,rvm-method}\alias{alpha,rvm-method}\alias{cross,rvm-method}\alias{error,rvm-method}\alias{fit,rvm-method}\alias{kcall,rvm-method}\alias{kernelf,rvm-method}\alias{kpar,rvm-method}\alias{lev,rvm-method}\alias{mlike,rvm-method}\alias{nvar,rvm-method}\alias{type,rvm-method}\alias{xmatrix,rvm-method}\alias{ymatrix,rvm-method}\title{Class "rvm"}\description{Relevance Vector Machine Class}\section{Objects from the Class}{Objects can be created by calls of the form \code{new("rvm", ...)}.or by calling the \code{rvm} function.}\section{Slots}{  \describe{    \item{\code{tol}:}{Object of class \code{"numeric"} contains      tolerance of termination critiria used.}    \item{\code{kernelf}:}{Object of class \code{"function"} contains      the kernel function used }    \item{\code{kpar}:}{Object of class \code{"list"} contains the      hyperparameter used}    \item{\code{kcall}:}{Object of class \code{"ANY"} contains the      function call}    \item{\code{type}:}{Object of class \code{"character"} contains type    of problem}    \item{\code{kterms}:}{Object of class \code{"ANY"}  containing the      terms representation of the symbolic model used (when using a      formula interface)}    \item{\code{xmatrix}:}{Object of class \code{"matrix"} contains the data      matrix used during computation}    \item{\code{ymatrix}:}{Object of class \code{"ANY"} contains the      response matrix}    \item{\code{fit}:}{Object of class \code{"ANY"} with the fitted      values, (predict on trianing set).}    \item{\code{lev}:}{Object of class \code{"vector"} contains the      levels of the response (in classification)}    \item{\code{nclass}:}{Object of class \code{"numeric"} contains the      number of classes (in classification)}    \item{\code{alpha}:}{Object of class \code{"ANY"} containing the the    resulting alpha vector}    \item{\code{nvar}:}{Object of class \code{"numeric"} containing the      calculated variance (in case of regression)}    \item{\code{mlike}:}{Object of class \code{"numeric"} containing the    computed maximum likelihood}    \item{\code{RVindex}:}{Object of class \code{"vector"} containing      the indexes of the resulting relevance vectors }    \item{\code{nRV}:}{Object of class \code{"numeric"} containing the      number of relevance vectors}    \item{\code{cross}:}{Object of class \code{"ANY"} containing the      relusting cross validation error }    \item{\code{error}:}{Object of class \code{"numeric"} containing the    training error}    \item{\code{n.action}:}{Object of class \code{"ANY"} containing the      action performed on NA}  }}\section{Methods}{  \describe{    \item{RVindex}{\code{signature(object = "rvm")}: returns the index      of the relevance vectors }    \item{alpha}{\code{signature(object = "rvm")}: returns the resulting    alpha vector}    \item{cross}{\code{signature(object = "rvm")}: returns the resulting    cross validation error}    \item{error}{\code{signature(object = "rvm")}: returns the training      error  }    \item{fit}{\code{signature(object = "rvm")}: returns the fitted values }    \item{kcall}{\code{signature(object = "rvm")}: returns the function call }    \item{kernelf}{\code{signature(object = "rvm")}: returns the used      kernel function }    \item{kpar}{\code{signature(object = "rvm")}: returns the parameters    of the kernel function}    \item{lev}{\code{signature(object = "rvm")}: returns the levels of      the response (in classification)}    \item{mlike}{\code{signature(object = "rvm")}: returns the estimated    maiximum likelihood}    \item{nvar}{\code{signature(object = "rvm")}: returns the calculated    variance (in regression)}    \item{type}{\code{signature(object = "rvm")}: returns the type of problem}    \item{xmatrix}{\code{signature(object = "rvm")}: returns the data      mmatrix used during computation}    \item{ymatrix}{\code{signature(object = "rvm")}: returns the used response }  }}\author{Alexandros Karatzoglou\cr \email{alexandros.karatzoglou@ci.tuwien.ac.at}}\seealso{  \code{\link{rvm}},    \code{\link{ksvm-class}}}\examples{# create datax <- seq(-20,20,0.1)y <- sin(x)/x + rnorm(401,sd=0.05)# train relevance vector machinefoo <- rvm(x, y)fooalpha(foo)RVindex(foo)fit(foo)kernelf(foo)nvar(foo)## show slotsslotNames(foo)}\keyword{classes}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -