⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sigest.rd

📁 这是核学习的一个基础软件包
💻 RD
字号:
\name{sigest}\alias{sigest}\alias{sigest,formula-method}\alias{sigest,matrix-method}\title{Hyperparameter estimation for the Gaussian Radial Basis kernel}\description{ Given a range of values for the "sigma" inverse width parameter in the Gaussian Radial Basis kernel for use with Support Vector Machines. The estimation is based on the data to be used.  }\usage{\S4method{sigest}{formula}(x, data=NULL, frac = 0.25, na.action = na.omit, scaled = TRUE)\S4method{sigest}{matrix}(x, frac = 0.25, scaled = TRUE, na.action = na.omit)}\arguments{  \item{x}{a symbolic description of the model upon the estimation is    based. When not using a formula x is a matrix or vector    containing the data} \item{data}{an optional data frame containing the variables in the model.          By default the variables are taken from the environment which          `ksvm' is called from.}\item{frac}{Fraction of data to use for estimation. By default a quarter  of the data is used to estimate the range of the sigma hyperparameter.}		\item{scaled}{A logical vector indicating the variables to be    scaled. If \code{scaled} is of length 1, the value is recycled as    many times as needed and all non-binary variables are scaled.    Per default, data are scaled internally to zero mean and unit    variance    (since this the default action in \code{ksvm} as well). The center and scale    values are returned and used for later predictions. }  \item{na.action}{A function to specify the action to be taken if \code{NA}s are          found. The default action is \code{na.omit}, which leads to rejection of cases          with missing values on any required variable. An alternative	  is \code{na.fail}, which causes an error if \code{NA} cases	  are found. (NOTE: If given, this argument must be named.)} }\details{\code{sigest} estimates the range of values for the sigma parameterwhich would return good results when used with a Support VectorMachine (\code{ksvm}). The estimation is based upon the 0.1 and 0.9 quantile of \eqn{\|x -x'\|^2}. Basicly any value in between those two bounds willproduce good results.}\value{  Returns a vector of length 2 defining the range (upper bound and lower bound) of  the sigma hyperparameter.   }\references{ B. Caputo, K. Sim, F. Furesjo, A. Smola, \cr\emph{Appearance-based object recognition using SVMs: which kernel should I use?}\crProc of NIPS workshop on Statitsical methods for computational experiments in visual processing and computer vision, Whistler, 2002.}\author{Alexandros Karatzoglou \cr   \email{alexandros.karatzoglou@ci.tuwien.ac.at}}\seealso{\code{\link{ksvm}}}}\examples{## estimate good sigma values for spamdata(spam)srange <- sigest(type~.,data = spam)srange## Use that to build a spam filters <- sum(srange)/2s## create test and training setindex <- sample(1:dim(spam)[1])spamtrain <- spam[index[1:floor(2 * dim(spam)[1]/3)], ]spamtest <- spam[index[((2 * ceiling(dim(spam)[1]/3)) + 1):dim(spam)[1]], ]## train a support vector machinefilter <- ksvm(type~.,data=spamtrain,kernel="rbfdot",kpar=list(sigma = s),C=50,cross=3)filter## predict mail type on the test setmailtype <- predict(filter,spamtest[,-58])## Check resultstable(mailtype,spamtest[,58])}\keyword{classif}\keyword{regression}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -