📄 predict.ksvm.rd
字号:
\name{predict.ksvm}\alias{predict.ksvm}\alias{predict,ksvm-method}\title{predict method for support vector object}\description{Prediction of test data using support vector machines}\usage{\S4method{predict}{ksvm}(object, newdata, type = "response", coupler = "minpair")}\arguments{ \item{object}{an S4 object of class \code{ksvm} created by the \code{ksvm} function} \item{newdata}{a data frame or matrix containing new data} \item{type}{one of \code{response}, \code{probabilities} ,\code{votes} indicating the type of output: predicted values, matrix of class probabilities, or matrix of vote counts.} \item{coupler}{Coupling method used in the multiclass case, can be one of \code{minpair} or \code{pkpd} (see reference for more details).}}\value{ If \code{type(object)} is \code{C-classification}, \code{nu-classification} or \code{spoc-classification} the vector returned depends on the argument \code{type}: \item{response}{predicted classes (the classes with majority vote).} \item{probabilities}{matrix of class probabilities (one column for each class and one row for each input).} \item{votes}{matrix of vote counts (one column for each class and one row for each new input)} If \code{type(object)} is \code{eps-regression},or \code{nu-regression} a vector of predicted values is returned. If \code{type(object)} is \code{one-classification} a vector of logical values is returned. } \references{ \itemize{ \item T.F. Wu, C.J. Lin, R.C. Weng. \cr \emph{Probability estimates for Multi-class Classification by Pairwise Coupling}\cr \url{http://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf} \item H.T. Lin, C.J. Lin, R.C. Weng\cr \emph{A note on Platt's probabilistic outputs for support vector machines}\cr \url{http://www.csie.ntu.edu.tw/~cjlin/papers/plattprob.ps} }}\author{Alexandros Karatzoglou\cr \email{alexandros.karatzoglou@ci.tuwien.ac.at}} \keyword{methods}\keyword{regression}\keyword{classif}\examples{## example using the spam data setdata(spam)## create test and training settraindex <- sample(1:dim(spam)[1],2*dim(spam)[1]/3)spamtrain <- spam[traindex, ]spamtest <- spam[-traindex, ]## train a support vector machinefilter <- ksvm(type~.,data=spamtrain,kernel="rbfdot",kpar=list(sigma=0.05),C=5,cross=3)filter## predict mail type probabilities on the test setmailtype <- predict(filter,spamtest,type="probabilities")mailtype[c(1:10,1000:1010),]}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -