📄 ksvm-class.rd
字号:
\name{ksvm-class}\docType{class}\alias{ksvm-class}\alias{SVindex}\alias{cross}\alias{alpha}\alias{alphaindex}\alias{coeff}\alias{cross}\alias{error}\alias{fit}\alias{type}\alias{kernelf}\alias{xmatrix}\alias{ymatrix}\alias{scaling}\alias{lev}\alias{kcall}\alias{show}\alias{SVindex,ksvm-method}\alias{alpha,ksvm-method}\alias{alphaindex,ksvm-method}\alias{cross,ksvm-method}\alias{error,ksvm-method}\alias{fit,ksvm-method}\alias{kernelf,ksvm-method}\alias{kpar,ksvm-method}\alias{lev,ksvm-method}\alias{kcall,ksvm-method}\alias{scaling,ksvm-method}\alias{type,ksvm-method}\alias{xmatrix,ksvm-method}\alias{ymatrix,ksvm-method}\title{Class "ksvm" }\description{An S4 class containing the output (model) of the \code{ksvm} Support Vector Machines function }\section{Objects from the Class}{ Objects can be created by calls of the form \code{new("ksvm", ...)} or by calls to the \code{ksvm} function.}\section{Slots}{ \describe{ \item{\code{type}:}{Object of class \code{"character"} containing the problem support vector machine problem type ("C-classification", "nu-classification", "spoc-classification", "one-classification", "eps-regression", "nu-regression")} \item{\code{param}:}{Object of class \code{"list"} containing the Support Vector Machine parameters (C, nu, epsilon)} \item{\code{kernelf}:}{Object of class \code{"function"} containing the kernel function} \item{\code{kpar}:}{Object of class \code{"list"} containing the kernel function parameters (hyperparameters)} \item{\code{kcall}:}{Object of class \code{"ANY"} containing the \code{ksvm} function call} \item{\code{scaling}:}{Object of class \code{"ANY"} containing the scaling information performed on the data} \item{\code{kterms}:}{Object of class \code{"ANY"} containing the terms representation of the symbolic model used (when using a formula)} \item{\code{xmatrix}:}{Object of class \code{"matrix"} the data matrix used during computations (possibly scaled and whithout NA)} \item{\code{ymatrix}:}{Object of class \code{"ANY"} the response matrix/vector } \item{\code{fit}:}{Object of class \code{"ANY"} with the fitted values, predictions using the training set.} \item{\code{lev}:}{Object of class \code{"vector"} with the levels of the response (in the case of classifiaction) } \item{\code{nclass}:}{Object of class \code{"numeric"} containing the number of classes (in the case of classification)} \item{\code{alpha}:}{Object of class \code{"ANY"} containing the resulting alpha vector (list or matrix in case of multiclass classification) (support vectors)} \item{\code{coeff}:}{Object of class \code{"ANY"} containing the resulting coefficients} \item{\code{alphaindex}:}{Object of class \code{"list"} containing} \item{\code{b}:}{Object of class \code{"numeric"} containing the resulting offset } \item{\code{SVindex}:}{Object of class \code{"vector"} containing the indexes of the support vectors} \item{\code{nSV}:}{Object of class \code{"numeric"} containing the number of suppport vector machines } \item{\code{error}:}{Object of class \code{"numeric"} containing the training error} \item{\code{cross}:}{Object of class \code{"numeric"} containing the cross-validation error } \item{\code{n.action}:}{Object of class \code{"ANY"} containing the action performed for NA } }}\section{Methods}{ \describe{ \item{SVindex}{\code{signature(object = "ksvm")}: return the indexes of support vectors} \item{alpha}{\code{signature(object = "ksvm")}: returns the complete alpha vector (wit zero values)} \item{alphaindex}{\code{signature(object = "ksvm")}: returns the indexes of non-zero alphas (support vectors} \item{cross}{\code{signature(object = "ksvm")}: returns the cross-validation error } \item{error}{\code{signature(object = "ksvm")}: returns the training error } \item{fit}{\code{signature(object = "ksvm")}: returns the fitted values (predict on training set) } \item{kernelf}{\code{signature(object = "ksvm")}: returns the kernel function} \item{kpar}{\code{signature(object = "ksvm")}: returns the kernel parameters (hyperparameters)} \item{lev}{\code{signature(object = "ksvm")}: returns the levels in case of classification } \item{kcall}{\code{signature(object="ksvm")}: returns the \code{ksvm} function call} \item{scaling}{\code{signature(object = "ksvm")}: returns the scaling values } \item{show}{\code{signature(object = "ksvm")}: prints the object information} \item{type}{\code{signature(object = "ksvm")}: returns the problem type} \item{xmatrix}{\code{signature(object = "ksvm")}: returns the data matrix used} \item{ymatrix}{\code{signature(object = "ksvm")}: returns the response vector} }}\author{Alexandros Karatzoglou \cr \email{alexandros.karatzolgou@ci.tuwien.ac.at}}\seealso{ \code{\link{ksvm}}, \code{\link{rvm-class}}, \code{\link{gausspr-class}}}\examples{## simple example using the spam data setdata(spam)## create test and training setspamtrain <- spam[1:(2 * dim(spam)[1]/3), ]spamtest <- spam[((2 * dim(spam)[1]/3) + 1):length(spam), ]## train a support vector machinefilter <- ksvm(type~.,data=spamtrain,kernel="rbfdot",kpar=list(sigma=0.05),C=5,cross=3)filter# the kernel functionkernelf(filter)# the alpha valuesalpha(filter)# the coefficientscoeff(filter)# the fitted valuesfit(filter)# the cross validation errorcross(filter)}\keyword{classes}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -