📄 sp_dec.c
字号:
{
lsp[i] = ( lsp_mid[i] >> 1 ) + ( lsp_new[i] >> 1 );
}
/* Subframe 3 */
Lsp_Az( lsp, Az );
Az += MP1;
/* Subframe 4 */
Lsp_Az( lsp_new, Az );
return;
}
/************************************************************************************
* Int_lpc_1to3
*
*
* Parameters:
* lsp_old I: LSP vector at the 4th subframe of past frame [M]
* lsp_new I: LSP vector at the 4th subframe of present frame [M]
* Az O: interpolated LP parameters in all subframes
* [AZ_SIZE]
*
* Function:
* Interpolates the LSPs and converts to LPC parameters to get a different
* LP filter in each subframe.
*
* The 20 ms speech frame is divided into 4 subframes.
* The LSPs are quantized and transmitted at the 4th
* subframes (once per frame) and interpolated at the
* 1st, 2nd and 3rd subframe.
*
* Returns:
* void
************************************************************************************/
static void Int_lpc_1to3( Word32 lsp_old[], Word32 lsp_new[], Word32 Az[] )
{/*lsp系数内插得到内插lsp矢量*/
Word32 lsp[M];
Word32 i;
for ( i = 0; i < 10; i+=2 )
{
lsp[i] = ( lsp_new[i] >> 2 ) + ( lsp_old[i] - ( lsp_old[i] >> 2 ) );
lsp[i+1] = ( lsp_new[i+1] >> 2 ) + ( lsp_old[i+1] - ( lsp_old[i+1] >> 2 ) );
}
/* Subframe 1 */
Lsp_Az( lsp, Az );
Az += MP1;
for ( i = 0; i < 10; i+=2 )
{
lsp[i] = ( lsp_old[i] >> 1 ) + ( lsp_new[i] >> 1 );
lsp[i+1] = ( lsp_old[i+1] >> 1 ) + ( lsp_new[i+1] >> 1 );
}
/* Subframe 2 */
Lsp_Az( lsp, Az );
Az += MP1;
for ( i = 0; i < 10; i+=2 )
{
lsp[i] = ( lsp_old[i] >> 2 ) + ( lsp_new[i] - ( lsp_new[i] >> 2 ) );
lsp[i+1] = ( lsp_old[i+1] >> 2 ) + ( lsp_new[i+1] - ( lsp_new[i+1] >> 2 ) );
}
/* Subframe 3 */
Lsp_Az( lsp, Az );
Az += MP1;
/* Subframe 4 */
Lsp_Az( lsp_new, Az );
return;
}
/************************************************************************************
* D_plsf_5
*
*
* Parameters:
* st->past_lsf_q I: Past dequantized LFSs
* st->past_r_q B: past quantized residual
* bfi B: bad frame indicator
* indice I: quantization indices of 3 submatrices, Q0
* lsp1_q O: quantized 1st LSP vector
* lsp2_q O: quantized 2nd LSP vector
*
* Function:
* Decodes the 2 sets of LSP parameters in a frame
* using the received quantization indices.
*
* Returns:
* void
**************************************************************************************/
static void D_plsf_5( D_plsfState *st, Word16 bfi, Word16 *indice, Word32 *lsp1_q
, Word32 *lsp2_q )
{/*根据lsf的索引号重构lsp系数*/
Word32 lsf1_r[M], lsf2_r[M], lsf1_q[M], lsf2_q[M];
Word32 i, temp1, temp2, sign;
const Word32 *p_dico;
/* if bad frame */
if ( bfi != 0 )
{
/* use the past LSFs slightly shifted towards their mean */
for ( i = 0; i < M; i += 2 )
{
lsf1_q[i] = ( ( st->past_lsf_q[i] * ALPHA_122 ) >> 15 ) + ( ( mean_lsf_5[i]
* ONE_ALPHA_122 ) >> 15 );
lsf1_q[i + 1] = ( ( st->past_lsf_q[i + 1] * ALPHA_122 ) >> 15 ) + ( (
mean_lsf_5[i + 1] * ONE_ALPHA_122 ) >> 15 );
}
memcpy( lsf2_q, lsf1_q, M <<2 );
/* estimate past quantized residual to be used in next frame */
for ( i = 0; i < M; i += 2 )
{
temp1 = mean_lsf_5[i] + ( ( st->past_r_q[i] * LSP_PRED_FAC_MR122 ) >>15 );
temp2 = mean_lsf_5[i + 1] +( ( st->past_r_q[i + 1] *LSP_PRED_FAC_MR122 ) >> 15 );
st->past_r_q[i] = lsf2_q[i] - temp1;
st->past_r_q[i + 1] = lsf2_q[i + 1] -temp2;
}
}
/* if good LSFs received */
else
{
/* decode prediction residuals from 5 received indices */
p_dico = &dico1_lsf_5[indice[0] << 2];
lsf1_r[0] = *p_dico++;
lsf1_r[1] = *p_dico++;
lsf2_r[0] = *p_dico++;
lsf2_r[1] = *p_dico++;
p_dico = &dico2_lsf_5[indice[1] << 2];
lsf1_r[2] = *p_dico++;
lsf1_r[3] = *p_dico++;
lsf2_r[2] = *p_dico++;
lsf2_r[3] = *p_dico++;
sign = ( Word16 )( indice[2] & 1 );
i = indice[2] >> 1;
p_dico = &dico3_lsf_5[i << 2];
if ( sign == 0 )
{
lsf1_r[4] = *p_dico++;
lsf1_r[5] = *p_dico++;
lsf2_r[4] = *p_dico++;
lsf2_r[5] = *p_dico++;
}
else
{
lsf1_r[4] = ( Word16 )( -( *p_dico++ ) );
lsf1_r[5] = ( Word16 )( -( *p_dico++ ) );
lsf2_r[4] = ( Word16 )( -( *p_dico++ ) );
lsf2_r[5] = ( Word16 )( -( *p_dico++ ) );
}
p_dico = &dico4_lsf_5[( indice[3]<<2 )];
lsf1_r[6] = *p_dico++;
lsf1_r[7] = *p_dico++;
lsf2_r[6] = *p_dico++;
lsf2_r[7] = *p_dico++;
p_dico = &dico5_lsf_5[( indice[4]<<2 )];
lsf1_r[8] = *p_dico++;
lsf1_r[9] = *p_dico++;
lsf2_r[8] = *p_dico++;
lsf2_r[9] = *p_dico++;
/* Compute quantized LSFs and update the past quantized residual */
for ( i = 0; i < M; i++ )
{
temp1 = mean_lsf_5[i] + ( ( st->past_r_q[i] * LSP_PRED_FAC_MR122 ) >>15 );
lsf1_q[i] = lsf1_r[i] + temp1;
lsf2_q[i] = lsf2_r[i] + temp1;
st->past_r_q[i] = lsf2_r[i];
}
}
/* verification that LSFs have minimum distance of LSF_GAP Hz */
Reorder_lsf( lsf1_q, LSF_GAP );
Reorder_lsf( lsf2_q, LSF_GAP );
memcpy( st->past_lsf_q, lsf2_q, M <<2 );
/* convert LSFs to the cosine domain */
Lsf_lsp( lsf1_q, lsp1_q );
Lsf_lsp( lsf2_q, lsp2_q );
return;
}
/************************************************************************************
* Dec_lag3
*
*
* Parameters:
* index I: received pitch index
* t0_min I: minimum of search range
* t0_max I: maximum of search range
* i_subfr I: subframe flag
* T0_prev I: integer pitch delay of last subframe used
* in 2nd and 4th subframes
* T0 O: integer part of pitch lag
* T0_frac O : fractional part of pitch lag
* flag4 I : flag for encoding with 4 bits
* Function:
* Decoding of fractional pitch lag with 1/3 resolution.
* Extract the integer and fraction parts of the pitch lag from
* the received adaptive codebook index.
*
* The fractional lag in 1st and 3rd subframes is encoded with 8 bits
* while that in 2nd and 4th subframes is relatively encoded with 4, 5
* and 6 bits depending on the mode.
*
* Returns:
* void
************************************************************************************/
static void Dec_lag3( Word32 index, Word32 t0_min, Word32 t0_max, Word32 i_subfr
, Word32 T0_prev, Word32 *T0, Word32 *T0_frac, Word32 flag4 )
{
Word32 i, tmp_lag;
/* if 1st or 3rd subframe */
if ( i_subfr == 0 )
{
if ( index < 197 )
{
*T0 = ( ( ( index + 2 ) * 10923 ) >> 15 ) + 19;
i = *T0 + *T0 + *T0;
*T0_frac = ( index - i ) + 58;
}
else
{
*T0 = index - 112;
*T0_frac = 0;
}
}
/* 2nd or 4th subframe */
else
{
if ( flag4 == 0 )
{
/* 'normal' decoding: either with 5 or 6 bit resolution */
i = ( ( ( index + 2 ) * 10923 ) >> 15 ) - 1;
*T0 = i + t0_min;
i = i + i + i;
*T0_frac = ( index - 2 ) - i;
}
else
{
/* decoding with 4 bit resolution */
tmp_lag = T0_prev;
if ( ( tmp_lag - t0_min ) > 5 )
tmp_lag = t0_min + 5;
if ( ( t0_max - tmp_lag ) > 4 )
tmp_lag = t0_max - 4;
if ( index < 4 )
{
i = ( tmp_lag - 5 );
*T0 = i + index;
*T0_frac = 0;
}
else
{
if ( index < 12 )
{
i = ( ( ( index - 5 ) * 10923 ) >> 15 ) - 1;
*T0 = i + tmp_lag;
i = i + i + i;
*T0_frac = ( index - 9 ) - i;
}
else
{
i = ( index - 12 ) + tmp_lag;
*T0 = i + 1;
*T0_frac = 0;
}
}
} /* end if (decoding with 4 bit resolution) */
}
return;
}
/************************************************************************************
* Pred_lt_3or6_40
*
*
* Parameters:
* exc B: excitation buffer
* T0 I: integer pitch lag
* frac I: fraction of lag
* flag3 I: if set, upsampling rate = 3 (6 otherwise)
*
* Function:
* Compute the result of long term prediction with fractional
* interpolation of resolution 1/3 or 1/6. (Interpolated past excitation).
*
* Once the fractional pitch lag is determined,
* the adaptive codebook vector v(n) is computed by interpolating
* the past excitation signal u(n) at the given integer delay k
* and phase (fraction) :
*
* 9 9
* v(n) = SUM[ u(n-k-i) * b60(t+i*6) ] + SUM[ u(n-k+1+i) * b60(6-t+i*6) ],
* i=0 i=0
* n = 0, ...,39, t = 0, ...,5.
*
* The interpolation filter b60 is based on a Hamming windowed sin(x)/x
* function truncated at ?59 and padded with zeros at ?60 (b60(60)=0)).
* The filter has a cut-off frequency (-3 dB) at 3 600 Hz in
* the over-sampled domain.
*
* Returns:
* void
*************************************************************************************/
static void Pred_lt_3or6_40( Word32 exc[], Word32 T0, Word32 frac, Word32 flag3 )
{/*内插过去的激励得到自适应码本矢量元素*/
Word32 s, i;
Word32 *x0, *x1, *x2;
const Word32 *c1, *c2;
x0 = &exc[ - T0];
frac = -frac;
if ( flag3 != 0 )
{
frac <<= 1; /* inter_3l[k] = inter6[2*k] -> k' = 2*k */
}
if ( frac < 0 )
{
frac += 6;
x0--;
}
c1 = &inter6[frac];
c2 = &inter6[6 - frac];
for ( i = 0; i < 40; i++ )
{
x1 = x0++;
x2 = x0;
s = x1[0] * c1[0];
s += x1[ - 1] * c1[6];
s += x1[ - 2] * c1[12];
s += x1[ - 3] * c1[18];
s += x1[ - 4] * c1[24];
s += x1[ - 5] * c1[30];
s += x1[ - 6] * c1[36];
s += x1[ - 7] * c1[42];
s += x1[ - 8] * c1[48];
s += x1[ - 9] * c1[54];
s += x2[0] * c2[0];
s += x2[1] * c2[6];
s += x2[2] * c2[12];
s += x2[3] * c2[18];
s += x2[4] * c2[24];
s += x2[5] * c2[30];
s += x2[6] * c2[36];
s += x2[7] * c2[42];
s += x2[8] * c2[48];
s += x2[9] * c2[54];
exc[i] = ( s + 0x4000 ) >> 15;
}
}
/************************************************************************************
* Dec_lag6
*
*
* Parameters:
* index I: received pitch index
* pit_min I: minimum pitch lag
* pit_max I: maximum pitch lag
* i_subfr I: subframe flag
* T0 B: integer part of pitch lag
* T0_frac O : fractional part of pitch lag
*
* Function:
* Decoding of fractional pitch lag with 1/6 resolution.
* Extract the integer and fraction parts of the pitch lag from
* the received adaptive codebook index.
*
* The fractional lag in 1st and 3rd subframes is encoded with 9 bits
* while that in 2nd and 4th subframes is relatively encoded with 6 bits.
* Note that in relative encoding only 61 values are used. If the
* decoder receives 61, 62, or 63 as the relative pitch index, it means
* that a transmission error occurred. In this case, the pitch lag from
* previous subframe (actually from previous frame) is used.
*
* Returns:
* void
*************************************************************************************/
static void Dec_lag6( Word32 index, Word32 pit_min, Word32 pit_max, Word32
i_subfr, Word32 *T0, Word32 *T0_frac )
{/*根据基音索引得到基音延时的整数部分和分数部分*/
Word32 t0_min, t0_max, i;
/* if 1st or 3rd subframe */
if ( i_subfr == 0 )
{
if ( index < 463 )
{
/* T0 = (index+5)/6 + 17 */
*T0 = ( index + 5 ) / 6 + 17;
i = *T0 + *T0 + *T0;
/* *T0_frac = index - T0*6 + 105 */
*T0_frac = ( index - ( i + i ) ) + 105;
}
else
{
*T0 = index - 368;
*T0_frac = 0;
}
}
/* second or fourth subframe */
else
{
/* find t0_min and t0_max for 2nd (or 4th) subframe */
t0_min = *T0 - 5;
if ( t0_min < pit_min )
{
t0_min = pit_min;
}
t0_max = t0_min + 9;
if ( t0_max > pit_max )
{
t0_max = pit_max;
t0_min = t0_max - 9;
}
/* i = (index+5)/6 - 1 */
i = ( index + 5 ) / 6 - 1;
*T0 = i + t0_min;
i = i + i + i;
*T0_frac = ( index - 3 ) - ( i + i );
}
}
/************************************************************************************
* decompress10
*
*
* Parameters:
* MSBs I: MSB part of the index
* LSBs I: LSB part of the index
* index1 I: index for first pos in posIndex
* index2 I: index for second pos in posIndex
* index3 I: index for third pos in posIndex
* pos_indx O: position of 3 pulses (decompressed)
* Function:
* Decompression of the linear codeword
*
* Returns:
* void
*************************************************************************************/
static void decompress10( Word32 MSBs, Word32 LSBs, Word32 index1, Word32 index2
, Word32 index3, Word32 pos_indx[] )
{
Word32 divMSB;
if (MSBs > 124)
{
MSBs = 124;
}
/*
* pos_indx[index1] = ((MSBs-25*(MSBs/25))%5)*2 + (LSBs-4*(LSBs/4))%2;
* pos_indx[index2] = ((MSBs-25*(MSBs/25))/5)*2 + (LSBs-4*(LSBs/4))/2;
* pos_indx[index3] = (MSBs/25)*2 + LSBs/4;
*/
divMSB = MSBs / 25;
pos_indx[index1] = ( ( ( MSBs - 25 * ( divMSB ) ) % 5 ) << 1 ) + ( LSBs & 0x1
);
pos_indx[index2] = ( ( ( MSBs - 25 * ( divMSB ) ) / 5 ) << 1 ) + ( ( LSBs &
0x2 ) >> 1 );
pos_indx[index3] = ( divMSB << 1 ) + ( LSBs >> 2 );
return;
}
/************************************************************************************
* decompress_codewords
*
*
* Parameters:
* indx I: position of 8 pulses (compressed)
* pos_indx O: position index of 8 pulses (position only)
*
* Function:
* Decompression of the linear codewords to 4+three indeces
* one bit from each pulse is made robust to errors by
* minimizing the phase shift of a bit error
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -