⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 q_math.c

📁 quakeIII源码这个不用我多说吧
💻 C
📖 第 1 页 / 共 3 页
字号:
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.

This file is part of Quake III Arena source code.

Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
===========================================================================
*/
//
// q_math.c -- stateless support routines that are included in each code module
#include "q_shared.h"


vec3_t	vec3_origin = {0,0,0};
vec3_t	axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };


vec4_t		colorBlack	= {0, 0, 0, 1};
vec4_t		colorRed	= {1, 0, 0, 1};
vec4_t		colorGreen	= {0, 1, 0, 1};
vec4_t		colorBlue	= {0, 0, 1, 1};
vec4_t		colorYellow	= {1, 1, 0, 1};
vec4_t		colorMagenta= {1, 0, 1, 1};
vec4_t		colorCyan	= {0, 1, 1, 1};
vec4_t		colorWhite	= {1, 1, 1, 1};
vec4_t		colorLtGrey	= {0.75, 0.75, 0.75, 1};
vec4_t		colorMdGrey	= {0.5, 0.5, 0.5, 1};
vec4_t		colorDkGrey	= {0.25, 0.25, 0.25, 1};

vec4_t	g_color_table[8] =
	{
	{0.0, 0.0, 0.0, 1.0},
	{1.0, 0.0, 0.0, 1.0},
	{0.0, 1.0, 0.0, 1.0},
	{1.0, 1.0, 0.0, 1.0},
	{0.0, 0.0, 1.0, 1.0},
	{0.0, 1.0, 1.0, 1.0},
	{1.0, 0.0, 1.0, 1.0},
	{1.0, 1.0, 1.0, 1.0},
	};


vec3_t	bytedirs[NUMVERTEXNORMALS] =
{
{-0.525731f, 0.000000f, 0.850651f}, {-0.442863f, 0.238856f, 0.864188f}, 
{-0.295242f, 0.000000f, 0.955423f}, {-0.309017f, 0.500000f, 0.809017f}, 
{-0.162460f, 0.262866f, 0.951056f}, {0.000000f, 0.000000f, 1.000000f}, 
{0.000000f, 0.850651f, 0.525731f}, {-0.147621f, 0.716567f, 0.681718f}, 
{0.147621f, 0.716567f, 0.681718f}, {0.000000f, 0.525731f, 0.850651f}, 
{0.309017f, 0.500000f, 0.809017f}, {0.525731f, 0.000000f, 0.850651f}, 
{0.295242f, 0.000000f, 0.955423f}, {0.442863f, 0.238856f, 0.864188f}, 
{0.162460f, 0.262866f, 0.951056f}, {-0.681718f, 0.147621f, 0.716567f}, 
{-0.809017f, 0.309017f, 0.500000f},{-0.587785f, 0.425325f, 0.688191f}, 
{-0.850651f, 0.525731f, 0.000000f},{-0.864188f, 0.442863f, 0.238856f}, 
{-0.716567f, 0.681718f, 0.147621f},{-0.688191f, 0.587785f, 0.425325f}, 
{-0.500000f, 0.809017f, 0.309017f}, {-0.238856f, 0.864188f, 0.442863f}, 
{-0.425325f, 0.688191f, 0.587785f}, {-0.716567f, 0.681718f, -0.147621f}, 
{-0.500000f, 0.809017f, -0.309017f}, {-0.525731f, 0.850651f, 0.000000f}, 
{0.000000f, 0.850651f, -0.525731f}, {-0.238856f, 0.864188f, -0.442863f}, 
{0.000000f, 0.955423f, -0.295242f}, {-0.262866f, 0.951056f, -0.162460f}, 
{0.000000f, 1.000000f, 0.000000f}, {0.000000f, 0.955423f, 0.295242f}, 
{-0.262866f, 0.951056f, 0.162460f}, {0.238856f, 0.864188f, 0.442863f}, 
{0.262866f, 0.951056f, 0.162460f}, {0.500000f, 0.809017f, 0.309017f}, 
{0.238856f, 0.864188f, -0.442863f},{0.262866f, 0.951056f, -0.162460f}, 
{0.500000f, 0.809017f, -0.309017f},{0.850651f, 0.525731f, 0.000000f}, 
{0.716567f, 0.681718f, 0.147621f}, {0.716567f, 0.681718f, -0.147621f}, 
{0.525731f, 0.850651f, 0.000000f}, {0.425325f, 0.688191f, 0.587785f}, 
{0.864188f, 0.442863f, 0.238856f}, {0.688191f, 0.587785f, 0.425325f}, 
{0.809017f, 0.309017f, 0.500000f}, {0.681718f, 0.147621f, 0.716567f}, 
{0.587785f, 0.425325f, 0.688191f}, {0.955423f, 0.295242f, 0.000000f}, 
{1.000000f, 0.000000f, 0.000000f}, {0.951056f, 0.162460f, 0.262866f}, 
{0.850651f, -0.525731f, 0.000000f},{0.955423f, -0.295242f, 0.000000f}, 
{0.864188f, -0.442863f, 0.238856f}, {0.951056f, -0.162460f, 0.262866f}, 
{0.809017f, -0.309017f, 0.500000f}, {0.681718f, -0.147621f, 0.716567f}, 
{0.850651f, 0.000000f, 0.525731f}, {0.864188f, 0.442863f, -0.238856f}, 
{0.809017f, 0.309017f, -0.500000f}, {0.951056f, 0.162460f, -0.262866f}, 
{0.525731f, 0.000000f, -0.850651f}, {0.681718f, 0.147621f, -0.716567f}, 
{0.681718f, -0.147621f, -0.716567f},{0.850651f, 0.000000f, -0.525731f}, 
{0.809017f, -0.309017f, -0.500000f}, {0.864188f, -0.442863f, -0.238856f}, 
{0.951056f, -0.162460f, -0.262866f}, {0.147621f, 0.716567f, -0.681718f}, 
{0.309017f, 0.500000f, -0.809017f}, {0.425325f, 0.688191f, -0.587785f}, 
{0.442863f, 0.238856f, -0.864188f}, {0.587785f, 0.425325f, -0.688191f}, 
{0.688191f, 0.587785f, -0.425325f}, {-0.147621f, 0.716567f, -0.681718f}, 
{-0.309017f, 0.500000f, -0.809017f}, {0.000000f, 0.525731f, -0.850651f}, 
{-0.525731f, 0.000000f, -0.850651f}, {-0.442863f, 0.238856f, -0.864188f}, 
{-0.295242f, 0.000000f, -0.955423f}, {-0.162460f, 0.262866f, -0.951056f}, 
{0.000000f, 0.000000f, -1.000000f}, {0.295242f, 0.000000f, -0.955423f}, 
{0.162460f, 0.262866f, -0.951056f}, {-0.442863f, -0.238856f, -0.864188f}, 
{-0.309017f, -0.500000f, -0.809017f}, {-0.162460f, -0.262866f, -0.951056f}, 
{0.000000f, -0.850651f, -0.525731f}, {-0.147621f, -0.716567f, -0.681718f}, 
{0.147621f, -0.716567f, -0.681718f}, {0.000000f, -0.525731f, -0.850651f}, 
{0.309017f, -0.500000f, -0.809017f}, {0.442863f, -0.238856f, -0.864188f}, 
{0.162460f, -0.262866f, -0.951056f}, {0.238856f, -0.864188f, -0.442863f}, 
{0.500000f, -0.809017f, -0.309017f}, {0.425325f, -0.688191f, -0.587785f}, 
{0.716567f, -0.681718f, -0.147621f}, {0.688191f, -0.587785f, -0.425325f}, 
{0.587785f, -0.425325f, -0.688191f}, {0.000000f, -0.955423f, -0.295242f}, 
{0.000000f, -1.000000f, 0.000000f}, {0.262866f, -0.951056f, -0.162460f}, 
{0.000000f, -0.850651f, 0.525731f}, {0.000000f, -0.955423f, 0.295242f}, 
{0.238856f, -0.864188f, 0.442863f}, {0.262866f, -0.951056f, 0.162460f}, 
{0.500000f, -0.809017f, 0.309017f}, {0.716567f, -0.681718f, 0.147621f}, 
{0.525731f, -0.850651f, 0.000000f}, {-0.238856f, -0.864188f, -0.442863f}, 
{-0.500000f, -0.809017f, -0.309017f}, {-0.262866f, -0.951056f, -0.162460f}, 
{-0.850651f, -0.525731f, 0.000000f}, {-0.716567f, -0.681718f, -0.147621f}, 
{-0.716567f, -0.681718f, 0.147621f}, {-0.525731f, -0.850651f, 0.000000f}, 
{-0.500000f, -0.809017f, 0.309017f}, {-0.238856f, -0.864188f, 0.442863f}, 
{-0.262866f, -0.951056f, 0.162460f}, {-0.864188f, -0.442863f, 0.238856f}, 
{-0.809017f, -0.309017f, 0.500000f}, {-0.688191f, -0.587785f, 0.425325f}, 
{-0.681718f, -0.147621f, 0.716567f}, {-0.442863f, -0.238856f, 0.864188f}, 
{-0.587785f, -0.425325f, 0.688191f}, {-0.309017f, -0.500000f, 0.809017f}, 
{-0.147621f, -0.716567f, 0.681718f}, {-0.425325f, -0.688191f, 0.587785f}, 
{-0.162460f, -0.262866f, 0.951056f}, {0.442863f, -0.238856f, 0.864188f}, 
{0.162460f, -0.262866f, 0.951056f}, {0.309017f, -0.500000f, 0.809017f}, 
{0.147621f, -0.716567f, 0.681718f}, {0.000000f, -0.525731f, 0.850651f}, 
{0.425325f, -0.688191f, 0.587785f}, {0.587785f, -0.425325f, 0.688191f}, 
{0.688191f, -0.587785f, 0.425325f}, {-0.955423f, 0.295242f, 0.000000f}, 
{-0.951056f, 0.162460f, 0.262866f}, {-1.000000f, 0.000000f, 0.000000f}, 
{-0.850651f, 0.000000f, 0.525731f}, {-0.955423f, -0.295242f, 0.000000f}, 
{-0.951056f, -0.162460f, 0.262866f}, {-0.864188f, 0.442863f, -0.238856f}, 
{-0.951056f, 0.162460f, -0.262866f}, {-0.809017f, 0.309017f, -0.500000f}, 
{-0.864188f, -0.442863f, -0.238856f}, {-0.951056f, -0.162460f, -0.262866f}, 
{-0.809017f, -0.309017f, -0.500000f}, {-0.681718f, 0.147621f, -0.716567f}, 
{-0.681718f, -0.147621f, -0.716567f}, {-0.850651f, 0.000000f, -0.525731f}, 
{-0.688191f, 0.587785f, -0.425325f}, {-0.587785f, 0.425325f, -0.688191f}, 
{-0.425325f, 0.688191f, -0.587785f}, {-0.425325f, -0.688191f, -0.587785f}, 
{-0.587785f, -0.425325f, -0.688191f}, {-0.688191f, -0.587785f, -0.425325f}
};

//==============================================================

int		Q_rand( int *seed ) {
	*seed = (69069 * *seed + 1);
	return *seed;
}

float	Q_random( int *seed ) {
	return ( Q_rand( seed ) & 0xffff ) / (float)0x10000;
}

float	Q_crandom( int *seed ) {
	return 2.0 * ( Q_random( seed ) - 0.5 );
}

#ifdef __LCC__

int VectorCompare( const vec3_t v1, const vec3_t v2 ) {
	if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2]) {
		return 0;
	}			
	return 1;
}

vec_t VectorLength( const vec3_t v ) {
	return (vec_t)sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}

vec_t VectorLengthSquared( const vec3_t v ) {
	return (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}

vec_t Distance( const vec3_t p1, const vec3_t p2 ) {
	vec3_t	v;

	VectorSubtract (p2, p1, v);
	return VectorLength( v );
}

vec_t DistanceSquared( const vec3_t p1, const vec3_t p2 ) {
	vec3_t	v;

	VectorSubtract (p2, p1, v);
	return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
}

// fast vector normalize routine that does not check to make sure
// that length != 0, nor does it return length, uses rsqrt approximation
void VectorNormalizeFast( vec3_t v )
{
	float ilength;

	ilength = Q_rsqrt( DotProduct( v, v ) );

	v[0] *= ilength;
	v[1] *= ilength;
	v[2] *= ilength;
}

void VectorInverse( vec3_t v ){
	v[0] = -v[0];
	v[1] = -v[1];
	v[2] = -v[2];
}

void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
	cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
	cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
	cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
#endif

//=======================================================

signed char ClampChar( int i ) {
	if ( i < -128 ) {
		return -128;
	}
	if ( i > 127 ) {
		return 127;
	}
	return i;
}

signed short ClampShort( int i ) {
	if ( i < -32768 ) {
		return -32768;
	}
	if ( i > 0x7fff ) {
		return 0x7fff;
	}
	return i;
}


// this isn't a real cheap function to call!
int DirToByte( vec3_t dir ) {
	int		i, best;
	float	d, bestd;

	if ( !dir ) {
		return 0;
	}

	bestd = 0;
	best = 0;
	for (i=0 ; i<NUMVERTEXNORMALS ; i++)
	{
		d = DotProduct (dir, bytedirs[i]);
		if (d > bestd)
		{
			bestd = d;
			best = i;
		}
	}

	return best;
}

void ByteToDir( int b, vec3_t dir ) {
	if ( b < 0 || b >= NUMVERTEXNORMALS ) {
		VectorCopy( vec3_origin, dir );
		return;
	}
	VectorCopy (bytedirs[b], dir);
}


unsigned ColorBytes3 (float r, float g, float b) {
	unsigned	i;

	( (byte *)&i )[0] = r * 255;
	( (byte *)&i )[1] = g * 255;
	( (byte *)&i )[2] = b * 255;

	return i;
}

unsigned ColorBytes4 (float r, float g, float b, float a) {
	unsigned	i;

	( (byte *)&i )[0] = r * 255;
	( (byte *)&i )[1] = g * 255;
	( (byte *)&i )[2] = b * 255;
	( (byte *)&i )[3] = a * 255;

	return i;
}

float NormalizeColor( const vec3_t in, vec3_t out ) {
	float	max;
	
	max = in[0];
	if ( in[1] > max ) {
		max = in[1];
	}
	if ( in[2] > max ) {
		max = in[2];
	}

	if ( !max ) {
		VectorClear( out );
	} else {
		out[0] = in[0] / max;
		out[1] = in[1] / max;
		out[2] = in[2] / max;
	}
	return max;
}


/*
=====================
PlaneFromPoints

Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
	vec3_t	d1, d2;

	VectorSubtract( b, a, d1 );
	VectorSubtract( c, a, d2 );
	CrossProduct( d2, d1, plane );
	if ( VectorNormalize( plane ) == 0 ) {
		return qfalse;
	}

	plane[3] = DotProduct( a, plane );
	return qtrue;
}

/*
===============
RotatePointAroundVector

This is not implemented very well...
===============
*/
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
							 float degrees ) {
	float	m[3][3];
	float	im[3][3];
	float	zrot[3][3];
	float	tmpmat[3][3];
	float	rot[3][3];
	int	i;
	vec3_t vr, vup, vf;
	float	rad;

	vf[0] = dir[0];
	vf[1] = dir[1];
	vf[2] = dir[2];

	PerpendicularVector( vr, dir );
	CrossProduct( vr, vf, vup );

	m[0][0] = vr[0];
	m[1][0] = vr[1];
	m[2][0] = vr[2];

	m[0][1] = vup[0];
	m[1][1] = vup[1];
	m[2][1] = vup[2];

	m[0][2] = vf[0];
	m[1][2] = vf[1];
	m[2][2] = vf[2];

	memcpy( im, m, sizeof( im ) );

	im[0][1] = m[1][0];
	im[0][2] = m[2][0];
	im[1][0] = m[0][1];
	im[1][2] = m[2][1];
	im[2][0] = m[0][2];
	im[2][1] = m[1][2];

	memset( zrot, 0, sizeof( zrot ) );
	zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;

	rad = DEG2RAD( degrees );
	zrot[0][0] = cos( rad );
	zrot[0][1] = sin( rad );
	zrot[1][0] = -sin( rad );
	zrot[1][1] = cos( rad );

	MatrixMultiply( m, zrot, tmpmat );
	MatrixMultiply( tmpmat, im, rot );

	for ( i = 0; i < 3; i++ ) {
		dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
	}
}

/*
===============
RotateAroundDirection
===============
*/
void RotateAroundDirection( vec3_t axis[3], float yaw ) {

	// create an arbitrary axis[1] 
	PerpendicularVector( axis[1], axis[0] );

	// rotate it around axis[0] by yaw
	if ( yaw ) {
		vec3_t	temp;

		VectorCopy( axis[1], temp );
		RotatePointAroundVector( axis[1], axis[0], temp, yaw );
	}

	// cross to get axis[2]
	CrossProduct( axis[0], axis[1], axis[2] );
}



void vectoangles( const vec3_t value1, vec3_t angles ) {
	float	forward;
	float	yaw, pitch;
	
	if ( value1[1] == 0 && value1[0] == 0 ) {
		yaw = 0;
		if ( value1[2] > 0 ) {
			pitch = 90;
		}
		else {
			pitch = 270;
		}
	}
	else {
		if ( value1[0] ) {
			yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI );
		}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -