📄 cm_trace.c
字号:
float t;
vec3_t startp;
vec3_t endp;
enterFrac = -1.0;
leaveFrac = 1.0;
clipplane = NULL;
if ( !brush->numsides ) {
return;
}
c_brush_traces++;
getout = qfalse;
startout = qfalse;
leadside = NULL;
if ( tw->sphere.use ) {
//
// compare the trace against all planes of the brush
// find the latest time the trace crosses a plane towards the interior
// and the earliest time the trace crosses a plane towards the exterior
//
for (i = 0; i < brush->numsides; i++) {
side = brush->sides + i;
plane = side->plane;
// adjust the plane distance apropriately for radius
dist = plane->dist + tw->sphere.radius;
// find the closest point on the capsule to the plane
t = DotProduct( plane->normal, tw->sphere.offset );
if ( t > 0 )
{
VectorSubtract( tw->start, tw->sphere.offset, startp );
VectorSubtract( tw->end, tw->sphere.offset, endp );
}
else
{
VectorAdd( tw->start, tw->sphere.offset, startp );
VectorAdd( tw->end, tw->sphere.offset, endp );
}
d1 = DotProduct( startp, plane->normal ) - dist;
d2 = DotProduct( endp, plane->normal ) - dist;
if (d2 > 0) {
getout = qtrue; // endpoint is not in solid
}
if (d1 > 0) {
startout = qtrue;
}
// if completely in front of face, no intersection with the entire brush
if (d1 > 0 && ( d2 >= SURFACE_CLIP_EPSILON || d2 >= d1 ) ) {
return;
}
// if it doesn't cross the plane, the plane isn't relevent
if (d1 <= 0 && d2 <= 0 ) {
continue;
}
// crosses face
if (d1 > d2) { // enter
f = (d1-SURFACE_CLIP_EPSILON) / (d1-d2);
if ( f < 0 ) {
f = 0;
}
if (f > enterFrac) {
enterFrac = f;
clipplane = plane;
leadside = side;
}
} else { // leave
f = (d1+SURFACE_CLIP_EPSILON) / (d1-d2);
if ( f > 1 ) {
f = 1;
}
if (f < leaveFrac) {
leaveFrac = f;
}
}
}
} else {
//
// compare the trace against all planes of the brush
// find the latest time the trace crosses a plane towards the interior
// and the earliest time the trace crosses a plane towards the exterior
//
for (i = 0; i < brush->numsides; i++) {
side = brush->sides + i;
plane = side->plane;
// adjust the plane distance apropriately for mins/maxs
dist = plane->dist - DotProduct( tw->offsets[ plane->signbits ], plane->normal );
d1 = DotProduct( tw->start, plane->normal ) - dist;
d2 = DotProduct( tw->end, plane->normal ) - dist;
if (d2 > 0) {
getout = qtrue; // endpoint is not in solid
}
if (d1 > 0) {
startout = qtrue;
}
// if completely in front of face, no intersection with the entire brush
if (d1 > 0 && ( d2 >= SURFACE_CLIP_EPSILON || d2 >= d1 ) ) {
return;
}
// if it doesn't cross the plane, the plane isn't relevent
if (d1 <= 0 && d2 <= 0 ) {
continue;
}
// crosses face
if (d1 > d2) { // enter
f = (d1-SURFACE_CLIP_EPSILON) / (d1-d2);
if ( f < 0 ) {
f = 0;
}
if (f > enterFrac) {
enterFrac = f;
clipplane = plane;
leadside = side;
}
} else { // leave
f = (d1+SURFACE_CLIP_EPSILON) / (d1-d2);
if ( f > 1 ) {
f = 1;
}
if (f < leaveFrac) {
leaveFrac = f;
}
}
}
}
//
// all planes have been checked, and the trace was not
// completely outside the brush
//
if (!startout) { // original point was inside brush
tw->trace.startsolid = qtrue;
if (!getout) {
tw->trace.allsolid = qtrue;
tw->trace.fraction = 0;
tw->trace.contents = brush->contents;
}
return;
}
if (enterFrac < leaveFrac) {
if (enterFrac > -1 && enterFrac < tw->trace.fraction) {
if (enterFrac < 0) {
enterFrac = 0;
}
tw->trace.fraction = enterFrac;
tw->trace.plane = *clipplane;
tw->trace.surfaceFlags = leadside->surfaceFlags;
tw->trace.contents = brush->contents;
}
}
}
/*
================
CM_TraceThroughLeaf
================
*/
void CM_TraceThroughLeaf( traceWork_t *tw, cLeaf_t *leaf ) {
int k;
int brushnum;
cbrush_t *b;
cPatch_t *patch;
// trace line against all brushes in the leaf
for ( k = 0 ; k < leaf->numLeafBrushes ; k++ ) {
brushnum = cm.leafbrushes[leaf->firstLeafBrush+k];
b = &cm.brushes[brushnum];
if ( b->checkcount == cm.checkcount ) {
continue; // already checked this brush in another leaf
}
b->checkcount = cm.checkcount;
if ( !(b->contents & tw->contents) ) {
continue;
}
CM_TraceThroughBrush( tw, b );
if ( !tw->trace.fraction ) {
return;
}
}
// trace line against all patches in the leaf
#ifdef BSPC
if (1) {
#else
if ( !cm_noCurves->integer ) {
#endif
for ( k = 0 ; k < leaf->numLeafSurfaces ; k++ ) {
patch = cm.surfaces[ cm.leafsurfaces[ leaf->firstLeafSurface + k ] ];
if ( !patch ) {
continue;
}
if ( patch->checkcount == cm.checkcount ) {
continue; // already checked this patch in another leaf
}
patch->checkcount = cm.checkcount;
if ( !(patch->contents & tw->contents) ) {
continue;
}
CM_TraceThroughPatch( tw, patch );
if ( !tw->trace.fraction ) {
return;
}
}
}
}
#define RADIUS_EPSILON 1.0f
/*
================
CM_TraceThroughSphere
get the first intersection of the ray with the sphere
================
*/
void CM_TraceThroughSphere( traceWork_t *tw, vec3_t origin, float radius, vec3_t start, vec3_t end ) {
float l1, l2, length, scale, fraction;
float a, b, c, d, sqrtd;
vec3_t v1, dir, intersection;
// if inside the sphere
VectorSubtract(start, origin, dir);
l1 = VectorLengthSquared(dir);
if (l1 < Square(radius)) {
tw->trace.fraction = 0;
tw->trace.startsolid = qtrue;
// test for allsolid
VectorSubtract(end, origin, dir);
l1 = VectorLengthSquared(dir);
if (l1 < Square(radius)) {
tw->trace.allsolid = qtrue;
}
return;
}
//
VectorSubtract(end, start, dir);
length = VectorNormalize(dir);
//
l1 = CM_DistanceFromLineSquared(origin, start, end, dir);
VectorSubtract(end, origin, v1);
l2 = VectorLengthSquared(v1);
// if no intersection with the sphere and the end point is at least an epsilon away
if (l1 >= Square(radius) && l2 > Square(radius+SURFACE_CLIP_EPSILON)) {
return;
}
//
// | origin - (start + t * dir) | = radius
// a = dir[0]^2 + dir[1]^2 + dir[2]^2;
// b = 2 * (dir[0] * (start[0] - origin[0]) + dir[1] * (start[1] - origin[1]) + dir[2] * (start[2] - origin[2]));
// c = (start[0] - origin[0])^2 + (start[1] - origin[1])^2 + (start[2] - origin[2])^2 - radius^2;
//
VectorSubtract(start, origin, v1);
// dir is normalized so a = 1
a = 1.0f;//dir[0] * dir[0] + dir[1] * dir[1] + dir[2] * dir[2];
b = 2.0f * (dir[0] * v1[0] + dir[1] * v1[1] + dir[2] * v1[2]);
c = v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2] - (radius+RADIUS_EPSILON) * (radius+RADIUS_EPSILON);
d = b * b - 4.0f * c;// * a;
if (d > 0) {
sqrtd = SquareRootFloat(d);
// = (- b + sqrtd) * 0.5f; // / (2.0f * a);
fraction = (- b - sqrtd) * 0.5f; // / (2.0f * a);
//
if (fraction < 0) {
fraction = 0;
}
else {
fraction /= length;
}
if ( fraction < tw->trace.fraction ) {
tw->trace.fraction = fraction;
VectorSubtract(end, start, dir);
VectorMA(start, fraction, dir, intersection);
VectorSubtract(intersection, origin, dir);
#ifdef CAPSULE_DEBUG
l2 = VectorLength(dir);
if (l2 < radius) {
int bah = 1;
}
#endif
scale = 1 / (radius+RADIUS_EPSILON);
VectorScale(dir, scale, dir);
VectorCopy(dir, tw->trace.plane.normal);
VectorAdd( tw->modelOrigin, intersection, intersection);
tw->trace.plane.dist = DotProduct(tw->trace.plane.normal, intersection);
tw->trace.contents = CONTENTS_BODY;
}
}
else if (d == 0) {
//t1 = (- b ) / 2;
// slide along the sphere
}
// no intersection at all
}
/*
================
CM_TraceThroughVerticalCylinder
get the first intersection of the ray with the cylinder
the cylinder extends halfheight above and below the origin
================
*/
void CM_TraceThroughVerticalCylinder( traceWork_t *tw, vec3_t origin, float radius, float halfheight, vec3_t start, vec3_t end) {
float length, scale, fraction, l1, l2;
float a, b, c, d, sqrtd;
vec3_t v1, dir, start2d, end2d, org2d, intersection;
// 2d coordinates
VectorSet(start2d, start[0], start[1], 0);
VectorSet(end2d, end[0], end[1], 0);
VectorSet(org2d, origin[0], origin[1], 0);
// if between lower and upper cylinder bounds
if (start[2] <= origin[2] + halfheight &&
start[2] >= origin[2] - halfheight) {
// if inside the cylinder
VectorSubtract(start2d, org2d, dir);
l1 = VectorLengthSquared(dir);
if (l1 < Square(radius)) {
tw->trace.fraction = 0;
tw->trace.startsolid = qtrue;
VectorSubtract(end2d, org2d, dir);
l1 = VectorLengthSquared(dir);
if (l1 < Square(radius)) {
tw->trace.allsolid = qtrue;
}
return;
}
}
//
VectorSubtract(end2d, start2d, dir);
length = VectorNormalize(dir);
//
l1 = CM_DistanceFromLineSquared(org2d, start2d, end2d, dir);
VectorSubtract(end2d, org2d, v1);
l2 = VectorLengthSquared(v1);
// if no intersection with the cylinder and the end point is at least an epsilon away
if (l1 >= Square(radius) && l2 > Square(radius+SURFACE_CLIP_EPSILON)) {
return;
}
//
//
// (start[0] - origin[0] - t * dir[0]) ^ 2 + (start[1] - origin[1] - t * dir[1]) ^ 2 = radius ^ 2
// (v1[0] + t * dir[0]) ^ 2 + (v1[1] + t * dir[1]) ^ 2 = radius ^ 2;
// v1[0] ^ 2 + 2 * v1[0] * t * dir[0] + (t * dir[0]) ^ 2 +
// v1[1] ^ 2 + 2 * v1[1] * t * dir[1] + (t * dir[1]) ^ 2 = radius ^ 2
// t ^ 2 * (dir[0] ^ 2 + dir[1] ^ 2) + t * (2 * v1[0] * dir[0] + 2 * v1[1] * dir[1]) +
// v1[0] ^ 2 + v1[1] ^ 2 - radius ^ 2 = 0
//
VectorSubtract(start, origin, v1);
// dir is normalized so we can use a = 1
a = 1.0f;// * (dir[0] * dir[0] + dir[1] * dir[1]);
b = 2.0f * (v1[0] * dir[0] + v1[1] * dir[1]);
c = v1[0] * v1[0] + v1[1] * v1[1] - (radius+RADIUS_EPSILON) * (radius+RADIUS_EPSILON);
d = b * b - 4.0f * c;// * a;
if (d > 0) {
sqrtd = SquareRootFloat(d);
// = (- b + sqrtd) * 0.5f;// / (2.0f * a);
fraction = (- b - sqrtd) * 0.5f;// / (2.0f * a);
//
if (fraction < 0) {
fraction = 0;
}
else {
fraction /= length;
}
if ( fraction < tw->trace.fraction ) {
VectorSubtract(end, start, dir);
VectorMA(start, fraction, dir, intersection);
// if the intersection is between the cylinder lower and upper bound
if (intersection[2] <= origin[2] + halfheight &&
intersection[2] >= origin[2] - halfheight) {
//
tw->trace.fraction = fraction;
VectorSubtract(intersection, origin, dir);
dir[2] = 0;
#ifdef CAPSULE_DEBUG
l2 = VectorLength(dir);
if (l2 <= radius) {
int bah = 1;
}
#endif
scale = 1 / (radius+RADIUS_EPSILON);
VectorScale(dir, scale, dir);
VectorCopy(dir, tw->trace.plane.normal);
VectorAdd( tw->modelOrigin, intersection, intersection);
tw->trace.plane.dist = DotProduct(tw->trace.plane.normal, intersection);
tw->trace.contents = CONTENTS_BODY;
}
}
}
else if (d == 0) {
//t[0] = (- b ) / 2 * a;
// slide along the cylinder
}
// no intersection at all
}
/*
================
CM_TraceCapsuleThroughCapsule
capsule vs. capsule collision (not rotated)
================
*/
void CM_TraceCapsuleThroughCapsule( traceWork_t *tw, clipHandle_t model ) {
int i;
vec3_t mins, maxs;
vec3_t top, bottom, starttop, startbottom, endtop, endbottom;
vec3_t offset, symetricSize[2];
float radius, halfwidth, halfheight, offs, h;
CM_ModelBounds(model, mins, maxs);
// test trace bounds vs. capsule bounds
if ( tw->bounds[0][0] > maxs[0] + RADIUS_EPSILON
|| tw->bounds[0][1] > maxs[1] + RADIUS_EPSILON
|| tw->bounds[0][2] > maxs[2] + RADIUS_EPSILON
|| tw->bounds[1][0] < mins[0] - RADIUS_EPSILON
|| tw->bounds[1][1] < mins[1] - RADIUS_EPSILON
|| tw->bounds[1][2] < mins[2] - RADIUS_EPSILON
) {
return;
}
// top origin and bottom origin of each sphere at start and end of trace
VectorAdd(tw->start, tw->sphere.offset, starttop);
VectorSubtract(tw->start, tw->sphere.offset, startbottom);
VectorAdd(tw->end, tw->sphere.offset, endtop);
VectorSubtract(tw->end, tw->sphere.offset, endbottom);
// calculate top and bottom of the capsule spheres to collide with
for ( i = 0 ; i < 3 ; i++ ) {
offset[i] = ( mins[i] + maxs[i] ) * 0.5;
symetricSize[0][i] = mins[i] - offset[i];
symetricSize[1][i] = maxs[i] - offset[i];
}
halfwidth = symetricSize[ 1 ][ 0 ];
halfheight = symetricSize[ 1 ][ 2 ];
radius = ( halfwidth > halfheight ) ? halfheight : halfwidth;
offs = halfheight - radius;
VectorCopy(offset, top);
top[2] += offs;
VectorCopy(offset, bottom);
bottom[2] -= offs;
// expand radius of spheres
radius += tw->sphere.radius;
// if there is horizontal movement
if ( tw->start[0] != tw->end[0] || tw->start[1] != tw->end[1] ) {
// height of the expanded cylinder is the height of both cylinders minus the radius of both spheres
h = halfheight + tw->sphere.halfheight - radius;
// if the cylinder has a height
if ( h > 0 ) {
// test for collisions between the cylinders
CM_TraceThroughVerticalCylinder(tw, offset, radius, h, tw->start, tw->end);
}
}
// test for collision between the spheres
CM_TraceThroughSphere(tw, top, radius, startbottom, endbottom);
CM_TraceThroughSphere(tw, bottom, radius, starttop, endtop);
}
/*
================
CM_TraceBoundingBoxThroughCapsule
bounding box vs. capsule collision
================
*/
void CM_TraceBoundingBoxThroughCapsule( traceWork_t *tw, clipHandle_t model ) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -