⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e1000_hw.c

📁 一个2.4.21版本的嵌入式linux内核
💻 C
📖 第 1 页 / 共 5 页
字号:
    }    if(hw->mac_type >= e1000_82543) {        status = E1000_READ_REG(hw, STATUS);        if(status & E1000_STATUS_TBIMODE) {            hw->media_type = e1000_media_type_fiber;            /* tbi_compatibility not valid on fiber */            hw->tbi_compatibility_en = FALSE;        } else {            hw->media_type = e1000_media_type_copper;        }    } else {        /* This is an 82542 (fiber only) */        hw->media_type = e1000_media_type_fiber;    }    /* Disabling VLAN filtering. */    DEBUGOUT("Initializing the IEEE VLAN\n");    E1000_WRITE_REG(hw, VET, 0);    e1000_clear_vfta(hw);    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */    if(hw->mac_type == e1000_82542_rev2_0) {        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");        e1000_pci_clear_mwi(hw);        E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);        E1000_WRITE_FLUSH(hw);        msec_delay(5);    }    /* Setup the receive address. This involves initializing all of the Receive     * Address Registers (RARs 0 - 15).     */    e1000_init_rx_addrs(hw);    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */    if(hw->mac_type == e1000_82542_rev2_0) {        E1000_WRITE_REG(hw, RCTL, 0);        E1000_WRITE_FLUSH(hw);        msec_delay(1);        if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)            e1000_pci_set_mwi(hw);    }    /* Zero out the Multicast HASH table */    DEBUGOUT("Zeroing the MTA\n");    for(i = 0; i < E1000_MC_TBL_SIZE; i++)        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);    /* Set the PCI priority bit correctly in the CTRL register.  This     * determines if the adapter gives priority to receives, or if it     * gives equal priority to transmits and receives.     */    if(hw->dma_fairness) {        ctrl = E1000_READ_REG(hw, CTRL);        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);    }    /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */    if(hw->bus_type == e1000_bus_type_pcix) {        e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);        e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);        cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>            PCIX_COMMAND_MMRBC_SHIFT;        stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>            PCIX_STATUS_HI_MMRBC_SHIFT;        if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)            stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;        if(cmd_mmrbc > stat_mmrbc) {            pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;            pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;            e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);        }    }    /* Call a subroutine to configure the link and setup flow control. */    ret_val = e1000_setup_link(hw);    /* Set the transmit descriptor write-back policy */    if(hw->mac_type > e1000_82544) {        ctrl = E1000_READ_REG(hw, TXDCTL);        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;        E1000_WRITE_REG(hw, TXDCTL, ctrl);    }    /* Clear all of the statistics registers (clear on read).  It is     * important that we do this after we have tried to establish link     * because the symbol error count will increment wildly if there     * is no link.     */    e1000_clear_hw_cntrs(hw);    return ret_val;}/****************************************************************************** * Configures flow control and link settings. * * hw - Struct containing variables accessed by shared code * * Determines which flow control settings to use. Calls the apropriate media- * specific link configuration function. Configures the flow control settings. * Assuming the adapter has a valid link partner, a valid link should be * established. Assumes the hardware has previously been reset and the * transmitter and receiver are not enabled. *****************************************************************************/int32_te1000_setup_link(struct e1000_hw *hw){    uint32_t ctrl_ext;    int32_t ret_val;    uint16_t eeprom_data;    DEBUGFUNC("e1000_setup_link");    /* Read and store word 0x0F of the EEPROM. This word contains bits     * that determine the hardware's default PAUSE (flow control) mode,     * a bit that determines whether the HW defaults to enabling or     * disabling auto-negotiation, and the direction of the     * SW defined pins. If there is no SW over-ride of the flow     * control setting, then the variable hw->fc will     * be initialized based on a value in the EEPROM.     */    if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) {        DEBUGOUT("EEPROM Read Error\n");        return -E1000_ERR_EEPROM;    }    if(hw->fc == e1000_fc_default) {        if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)            hw->fc = e1000_fc_none;        else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==                EEPROM_WORD0F_ASM_DIR)            hw->fc = e1000_fc_tx_pause;        else            hw->fc = e1000_fc_full;    }    /* We want to save off the original Flow Control configuration just     * in case we get disconnected and then reconnected into a different     * hub or switch with different Flow Control capabilities.     */    if(hw->mac_type == e1000_82542_rev2_0)        hw->fc &= (~e1000_fc_tx_pause);    if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))        hw->fc &= (~e1000_fc_rx_pause);    hw->original_fc = hw->fc;    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);    /* Take the 4 bits from EEPROM word 0x0F that determine the initial     * polarity value for the SW controlled pins, and setup the     * Extended Device Control reg with that info.     * This is needed because one of the SW controlled pins is used for     * signal detection.  So this should be done before e1000_setup_pcs_link()     * or e1000_phy_setup() is called.     */    if(hw->mac_type == e1000_82543) {        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<                    SWDPIO__EXT_SHIFT);        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);    }    /* Call the necessary subroutine to configure the link. */    ret_val = (hw->media_type == e1000_media_type_fiber) ?              e1000_setup_fiber_link(hw) :              e1000_setup_copper_link(hw);    /* Initialize the flow control address, type, and PAUSE timer     * registers to their default values.  This is done even if flow     * control is disabled, because it does not hurt anything to     * initialize these registers.     */    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");    E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);    E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);    E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);    /* Set the flow control receive threshold registers.  Normally,     * these registers will be set to a default threshold that may be     * adjusted later by the driver's runtime code.  However, if the     * ability to transmit pause frames in not enabled, then these     * registers will be set to 0.     */    if(!(hw->fc & e1000_fc_tx_pause)) {        E1000_WRITE_REG(hw, FCRTL, 0);        E1000_WRITE_REG(hw, FCRTH, 0);    } else {        /* We need to set up the Receive Threshold high and low water marks         * as well as (optionally) enabling the transmission of XON frames.         */        if(hw->fc_send_xon) {            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);        } else {            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);        }    }    return ret_val;}/****************************************************************************** * Sets up link for a fiber based adapter * * hw - Struct containing variables accessed by shared code * * Manipulates Physical Coding Sublayer functions in order to configure * link. Assumes the hardware has been previously reset and the transmitter * and receiver are not enabled. *****************************************************************************/static int32_te1000_setup_fiber_link(struct e1000_hw *hw){    uint32_t ctrl;    uint32_t status;    uint32_t txcw = 0;    uint32_t i;    uint32_t signal;    int32_t ret_val;    DEBUGFUNC("e1000_setup_fiber_link");    /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be     * set when the optics detect a signal. On older adapters, it will be     * cleared when there is a signal     */    ctrl = E1000_READ_REG(hw, CTRL);    if(hw->mac_type > e1000_82544) signal = E1000_CTRL_SWDPIN1;    else signal = 0;    /* Take the link out of reset */    ctrl &= ~(E1000_CTRL_LRST);    e1000_config_collision_dist(hw);    /* Check for a software override of the flow control settings, and setup     * the device accordingly.  If auto-negotiation is enabled, then software     * will have to set the "PAUSE" bits to the correct value in the Tranmsit     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if     * auto-negotiation is disabled, then software will have to manually     * configure the two flow control enable bits in the CTRL register.     *     * The possible values of the "fc" parameter are:     *      0:  Flow control is completely disabled     *      1:  Rx flow control is enabled (we can receive pause frames, but     *          not send pause frames).     *      2:  Tx flow control is enabled (we can send pause frames but we do     *          not support receiving pause frames).     *      3:  Both Rx and TX flow control (symmetric) are enabled.     */    switch (hw->fc) {    case e1000_fc_none:        /* Flow control is completely disabled by a software over-ride. */        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);        break;    case e1000_fc_rx_pause:        /* RX Flow control is enabled and TX Flow control is disabled by a         * software over-ride. Since there really isn't a way to advertise         * that we are capable of RX Pause ONLY, we will advertise that we         * support both symmetric and asymmetric RX PAUSE. Later, we will         *  disable the adapter's ability to send PAUSE frames.         */        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);        break;    case e1000_fc_tx_pause:        /* TX Flow control is enabled, and RX Flow control is disabled, by a         * software over-ride.         */        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);        break;    case e1000_fc_full:        /* Flow control (both RX and TX) is enabled by a software over-ride. */        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);        break;    default:        DEBUGOUT("Flow control param set incorrectly\n");        return -E1000_ERR_CONFIG;        break;    }    /* Since auto-negotiation is enabled, take the link out of reset (the link     * will be in reset, because we previously reset the chip). This will     * restart auto-negotiation.  If auto-neogtiation is successful then the     * link-up status bit will be set and the flow control enable bits (RFCE     * and TFCE) will be set according to their negotiated value.     */    DEBUGOUT("Auto-negotiation enabled\n");    E1000_WRITE_REG(hw, TXCW, txcw);    E1000_WRITE_REG(hw, CTRL, ctrl);    E1000_WRITE_FLUSH(hw);    hw->txcw = txcw;    msec_delay(1);    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"     * indication in the Device Status Register.  Time-out if a link isn't     * seen in 500 milliseconds seconds (Auto-negotiation should complete in     * less than 500 milliseconds even if the other end is doing it in SW).     */    if((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {        DEBUGOUT("Looking for Link\n");        for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {            msec_delay(10);            status = E1000_READ_REG(hw, STATUS);            if(status & E1000_STATUS_LU) break;        }        if(i == (LINK_UP_TIMEOUT / 10)) {            /* AutoNeg failed to achieve a link, so we'll call             * e1000_check_for_link. This routine will force the link up if we             * detect a signal. This will allow us to communicate with             * non-autonegotiating link partners.             */            DEBUGOUT("Never got a valid link from auto-neg!!!\n");            hw->autoneg_failed = 1;            ret_val = e1000_check_for_link(hw);            if(ret_val < 0) {                DEBUGOUT("Error while checking for link\n");                return ret_val;            }            hw->autoneg_failed = 0;        } else {            hw->autoneg_failed = 0;            DEBUGOUT("Valid Link Found\n");        }    } else {        DEBUGOUT("No Signal Detected\n");    }    return 0;}/******************************************************************************* Detects which PHY is present and the speed and duplex** hw - Struct containing variables accessed by shared code******************************************************************************/static int32_te1000_setup_copper_link(struct e1000_hw *hw){

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -