📄 time.c
字号:
/* * linux/arch/i386/kernel/time.c * * Copyright (C) 1991, 1992, 1995 Linus Torvalds * * This file contains the PC-specific time handling details: * reading the RTC at bootup, etc.. * 1994-07-02 Alan Modra * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime * 1995-03-26 Markus Kuhn * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 * precision CMOS clock update * 1996-05-03 Ingo Molnar * fixed time warps in do_[slow|fast]_gettimeoffset() * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills * 1998-09-05 (Various) * More robust do_fast_gettimeoffset() algorithm implemented * (works with APM, Cyrix 6x86MX and Centaur C6), * monotonic gettimeofday() with fast_get_timeoffset(), * drift-proof precision TSC calibration on boot * (C. Scott Ananian <cananian@alumni.princeton.edu>, Andrew D. * Balsa <andrebalsa@altern.org>, Philip Gladstone <philip@raptor.com>; * ported from 2.0.35 Jumbo-9 by Michael Krause <m.krause@tu-harburg.de>). * 1998-12-16 Andrea Arcangeli * Fixed Jumbo-9 code in 2.1.131: do_gettimeofday was missing 1 jiffy * because was not accounting lost_ticks. * 1998-12-24 Copyright (C) 1998 Andrea Arcangeli * Fixed a xtime SMP race (we need the xtime_lock rw spinlock to * serialize accesses to xtime/lost_ticks). */#include <linux/errno.h>#include <linux/module.h>#include <linux/sched.h>#include <linux/kernel.h>#include <linux/param.h>#include <linux/string.h>#include <linux/mm.h>#include <linux/interrupt.h>#include <linux/time.h>#include <linux/delay.h>#include <linux/init.h>#include <linux/smp.h>#include <asm/io.h>#include <asm/smp.h>#include <asm/irq.h>#include <asm/msr.h>#include <asm/delay.h>#include <asm/mpspec.h>#include <asm/uaccess.h>#include <asm/processor.h>#include <linux/mc146818rtc.h>#include <linux/timex.h>#include <linux/config.h>#include <asm/fixmap.h>#include <asm/cobalt.h>/* * for x86_do_profile() */#include <linux/irq.h>unsigned long cpu_khz; /* Detected as we calibrate the TSC *//* Number of usecs that the last interrupt was delayed */static int delay_at_last_interrupt;static unsigned long last_tsc_low; /* lsb 32 bits of Time Stamp Counter *//* Cached *multiplier* to convert TSC counts to microseconds. * (see the equation below). * Equal to 2^32 * (1 / (clocks per usec) ). * Initialized in time_init. */unsigned long fast_gettimeoffset_quotient;extern rwlock_t xtime_lock;extern unsigned long wall_jiffies;spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED;static inline unsigned long do_fast_gettimeoffset(void){ register unsigned long eax, edx; /* Read the Time Stamp Counter */ rdtsc(eax,edx); /* .. relative to previous jiffy (32 bits is enough) */ eax -= last_tsc_low; /* tsc_low delta */ /* * Time offset = (tsc_low delta) * fast_gettimeoffset_quotient * = (tsc_low delta) * (usecs_per_clock) * = (tsc_low delta) * (usecs_per_jiffy / clocks_per_jiffy) * * Using a mull instead of a divl saves up to 31 clock cycles * in the critical path. */ __asm__("mull %2" :"=a" (eax), "=d" (edx) :"rm" (fast_gettimeoffset_quotient), "0" (eax)); /* our adjusted time offset in microseconds */ return delay_at_last_interrupt + edx;}#define TICK_SIZE tickspinlock_t i8253_lock = SPIN_LOCK_UNLOCKED;EXPORT_SYMBOL(i8253_lock);extern spinlock_t i8259A_lock;#ifndef CONFIG_X86_TSC/* This function must be called with interrupts disabled * It was inspired by Steve McCanne's microtime-i386 for BSD. -- jrs * * However, the pc-audio speaker driver changes the divisor so that * it gets interrupted rather more often - it loads 64 into the * counter rather than 11932! This has an adverse impact on * do_gettimeoffset() -- it stops working! What is also not * good is that the interval that our timer function gets called * is no longer 10.0002 ms, but 9.9767 ms. To get around this * would require using a different timing source. Maybe someone * could use the RTC - I know that this can interrupt at frequencies * ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix * it so that at startup, the timer code in sched.c would select * using either the RTC or the 8253 timer. The decision would be * based on whether there was any other device around that needed * to trample on the 8253. I'd set up the RTC to interrupt at 1024 Hz, * and then do some jiggery to have a version of do_timer that * advanced the clock by 1/1024 s. Every time that reached over 1/100 * of a second, then do all the old code. If the time was kept correct * then do_gettimeoffset could just return 0 - there is no low order * divider that can be accessed. * * Ideally, you would be able to use the RTC for the speaker driver, * but it appears that the speaker driver really needs interrupt more * often than every 120 us or so. * * Anyway, this needs more thought.... pjsg (1993-08-28) * * If you are really that interested, you should be reading * comp.protocols.time.ntp! */static unsigned long do_slow_gettimeoffset(void){ int count; static int count_p = LATCH; /* for the first call after boot */ static unsigned long jiffies_p = 0; /* * cache volatile jiffies temporarily; we have IRQs turned off. */ unsigned long jiffies_t; /* gets recalled with irq locally disabled */ spin_lock(&i8253_lock); /* timer count may underflow right here */ outb_p(0x00, 0x43); /* latch the count ASAP */ count = inb_p(0x40); /* read the latched count */ /* * We do this guaranteed double memory access instead of a _p * postfix in the previous port access. Wheee, hackady hack */ jiffies_t = jiffies; count |= inb_p(0x40) << 8; /* VIA686a test code... reset the latch if count > max + 1 */ if (count > LATCH) { outb_p(0x34, 0x43); outb_p(LATCH & 0xff, 0x40); outb(LATCH >> 8, 0x40); count = LATCH - 1; } spin_unlock(&i8253_lock); /* * avoiding timer inconsistencies (they are rare, but they happen)... * there are two kinds of problems that must be avoided here: * 1. the timer counter underflows * 2. hardware problem with the timer, not giving us continuous time, * the counter does small "jumps" upwards on some Pentium systems, * (see c't 95/10 page 335 for Neptun bug.) *//* you can safely undefine this if you don't have the Neptune chipset */#define BUGGY_NEPTUN_TIMER if( jiffies_t == jiffies_p ) { if( count > count_p ) { /* the nutcase */ int i; spin_lock(&i8259A_lock); /* * This is tricky when I/O APICs are used; * see do_timer_interrupt(). */ i = inb(0x20); spin_unlock(&i8259A_lock); /* assumption about timer being IRQ0 */ if (i & 0x01) { /* * We cannot detect lost timer interrupts ... * well, that's why we call them lost, don't we? :) * [hmm, on the Pentium and Alpha we can ... sort of] */ count -= LATCH; } else {#ifdef BUGGY_NEPTUN_TIMER /* * for the Neptun bug we know that the 'latch' * command doesnt latch the high and low value * of the counter atomically. Thus we have to * substract 256 from the counter * ... funny, isnt it? :) */ count -= 256;#else printk("do_slow_gettimeoffset(): hardware timer problem?\n");#endif } } } else jiffies_p = jiffies_t; count_p = count; count = ((LATCH-1) - count) * TICK_SIZE; count = (count + LATCH/2) / LATCH; return count;}static unsigned long (*do_gettimeoffset)(void) = do_slow_gettimeoffset;/* IBM Summit (EXA) Cyclone Timer code*/#ifdef CONFIG_X86_SUMMIT#define CYCLONE_CBAR_ADDR 0xFEB00CD0#define CYCLONE_PMCC_OFFSET 0x51A0#define CYCLONE_MPMC_OFFSET 0x51D0#define CYCLONE_MPCS_OFFSET 0x51A8#define CYCLONE_TIMER_FREQ 100000000int use_cyclone = 0;int __init cyclone_setup(char *str) { use_cyclone = 1; return 1;}static u32* volatile cyclone_timer; /* Cyclone MPMC0 register */static u32 last_cyclone_timer;static inline void mark_timeoffset_cyclone(void){ int count; unsigned long delta = last_cyclone_timer; spin_lock(&i8253_lock); /* quickly read the cyclone timer */ if(cyclone_timer) last_cyclone_timer = cyclone_timer[0]; /* calculate delay_at_last_interrupt */ outb_p(0x00, 0x43); /* latch the count ASAP */ count = inb_p(0x40); /* read the latched count */ count |= inb(0x40) << 8; spin_unlock(&i8253_lock); /*lost tick compensation*/ delta = last_cyclone_timer - delta; if(delta > loops_per_jiffy+2000){ delta = (delta/loops_per_jiffy)-1; jiffies += delta; } count = ((LATCH-1) - count) * TICK_SIZE; delay_at_last_interrupt = (count + LATCH/2) / LATCH;}static unsigned long do_gettimeoffset_cyclone(void){ u32 offset; if(!cyclone_timer) return delay_at_last_interrupt; /* Read the cyclone timer */ offset = cyclone_timer[0]; /* .. relative to previous jiffy */ offset = offset - last_cyclone_timer; /* convert cyclone ticks to microseconds */ /* XXX slow, can we speed this up? */ offset = offset/(CYCLONE_TIMER_FREQ/1000000); /* our adjusted time offset in microseconds */ return delay_at_last_interrupt + offset;}static void __init init_cyclone_clock(void){ u32* reg; u32 base; /* saved cyclone base address */ u32 pageaddr; /* page that contains cyclone_timer register */ u32 offset; /* offset from pageaddr to cyclone_timer register */ int i; printk(KERN_INFO "Summit chipset: Starting Cyclone Counter.\n"); /* find base address */ pageaddr = (CYCLONE_CBAR_ADDR)&PAGE_MASK; offset = (CYCLONE_CBAR_ADDR)&(~PAGE_MASK); set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); reg = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); if(!reg){ printk(KERN_ERR "Summit chipset: Could not find valid CBAR register.\n"); use_cyclone = 0; return; } base = *reg; if(!base){ printk(KERN_ERR "Summit chipset: Could not find valid CBAR value.\n"); use_cyclone = 0; return; } /* setup PMCC */ pageaddr = (base + CYCLONE_PMCC_OFFSET)&PAGE_MASK; offset = (base + CYCLONE_PMCC_OFFSET)&(~PAGE_MASK); set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); reg = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); if(!reg){ printk(KERN_ERR "Summit chipset: Could not find valid PMCC register.\n"); use_cyclone = 0; return; } reg[0] = 0x00000001; /* setup MPCS */ pageaddr = (base + CYCLONE_MPCS_OFFSET)&PAGE_MASK; offset = (base + CYCLONE_MPCS_OFFSET)&(~PAGE_MASK); set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); reg = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); if(!reg){ printk(KERN_ERR "Summit chipset: Could not find valid MPCS register.\n"); use_cyclone = 0; return; } reg[0] = 0x00000001; /* map in cyclone_timer */ pageaddr = (base + CYCLONE_MPMC_OFFSET)&PAGE_MASK; offset = (base + CYCLONE_MPMC_OFFSET)&(~PAGE_MASK); set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); cyclone_timer = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); if(!cyclone_timer){ printk(KERN_ERR "Summit chipset: Could not find valid MPMC register.\n"); use_cyclone = 0; return; } /*quick test to make sure its ticking*/ for(i=0; i<3; i++){ u32 old = cyclone_timer[0]; int stall = 100; while(stall--) barrier(); if(cyclone_timer[0] == old){ printk(KERN_ERR "Summit chipset: Counter not counting! DISABLED\n"); cyclone_timer = 0; use_cyclone = 0; return; } } /* Everything looks good, so set do_gettimeoffset */ do_gettimeoffset = do_gettimeoffset_cyclone; }void __cyclone_delay(unsigned long loops){ unsigned long bclock, now; if(!cyclone_timer) return; bclock = cyclone_timer[0]; do { rep_nop(); now = cyclone_timer[0]; } while ((now-bclock) < loops);}#endif /* CONFIG_X86_SUMMIT */#else#define do_gettimeoffset() do_fast_gettimeoffset()#endif/* No-cyclone stubs */#ifndef CONFIG_X86_SUMMITint __init cyclone_setup(char *str) { printk(KERN_ERR "cyclone: Kernel not compiled with CONFIG_X86_SUMMIT, cannot use the cyclone-timer.\n"); return 1;}const int use_cyclone = 0;static void mark_timeoffset_cyclone(void) {}static unsigned long do_gettimeoffset_cyclone(void) {return 0;}static void init_cyclone_clock(void) {}void __cyclone_delay(unsigned long loops) {}#endif /* CONFIG_X86_SUMMIT *//* * This version of gettimeofday has microsecond resolution * and better than microsecond precision on fast x86 machines with TSC. */void do_gettimeofday(struct timeval *tv){ unsigned long flags; unsigned long usec, sec; read_lock_irqsave(&xtime_lock, flags); usec = do_gettimeoffset(); { unsigned long lost = jiffies - wall_jiffies; if (lost) usec += lost * (1000000 / HZ); } sec = xtime.tv_sec; usec += xtime.tv_usec; read_unlock_irqrestore(&xtime_lock, flags); while (usec >= 1000000) { usec -= 1000000; sec++; } tv->tv_sec = sec;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -