⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 time.c

📁 一个2.4.21版本的嵌入式linux内核
💻 C
📖 第 1 页 / 共 2 页
字号:
static unsigned long __initrpcc_after_update_in_progress(void){	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);	return rpcc();}void __inittime_init(void){	unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;	unsigned long cycle_freq, one_percent;	long diff;	/* Calibrate CPU clock -- attempt #1.  */	if (!est_cycle_freq)		est_cycle_freq = validate_cc_value(calibrate_cc_with_pic());	cc1 = rpcc_after_update_in_progress();	/* Calibrate CPU clock -- attempt #2.  */	if (!est_cycle_freq) {		cc2 = rpcc_after_update_in_progress();		est_cycle_freq = validate_cc_value(cc2 - cc1);		cc1 = cc2;	}	cycle_freq = hwrpb->cycle_freq;	if (est_cycle_freq) {		/* If the given value is within 1% of what we calculated, 		   accept it.  Otherwise, use what we found.  */		one_percent = cycle_freq / 100;		diff = cycle_freq - est_cycle_freq;		if (diff < 0)			diff = -diff;		if (diff > one_percent) {			cycle_freq = est_cycle_freq;			printk("HWRPB cycle frequency bogus.  "			       "Estimated %lu Hz\n", cycle_freq);		} else {			est_cycle_freq = 0;		}	} else if (! validate_cc_value (cycle_freq)) {		printk("HWRPB cycle frequency bogus, "		       "and unable to estimate a proper value!\n");	}	/* From John Bowman <bowman@math.ualberta.ca>: allow the values	   to settle, as the Update-In-Progress bit going low isn't good	   enough on some hardware.  2ms is our guess; we havn't found 	   bogomips yet, but this is close on a 500Mhz box.  */	__delay(1000000);	sec = CMOS_READ(RTC_SECONDS);	min = CMOS_READ(RTC_MINUTES);	hour = CMOS_READ(RTC_HOURS);	day = CMOS_READ(RTC_DAY_OF_MONTH);	mon = CMOS_READ(RTC_MONTH);	year = CMOS_READ(RTC_YEAR);	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {		BCD_TO_BIN(sec);		BCD_TO_BIN(min);		BCD_TO_BIN(hour);		BCD_TO_BIN(day);		BCD_TO_BIN(mon);		BCD_TO_BIN(year);	}	/* PC-like is standard; used for year < 20 || year >= 70 */	epoch = 1900;	if (year < 20)		epoch = 2000;	else if (year >= 20 && year < 48)		/* NT epoch */		epoch = 1980;	else if (year >= 48 && year < 70)		/* Digital UNIX epoch */		epoch = 1952;	printk(KERN_INFO "Using epoch = %d\n", epoch);	if ((year += epoch) < 1970)		year += 100;	xtime.tv_sec = mktime(year, mon, day, hour, min, sec);	xtime.tv_usec = 0;	if (HZ > (1<<16)) {		extern void __you_loose (void);		__you_loose();	}	state.last_time = cc1;	state.scaled_ticks_per_cycle		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;	state.last_rtc_update = 0;	state.partial_tick = 0L;	/* Startup the timer source. */	alpha_mv.init_rtc();}/* * Use the cycle counter to estimate an displacement from the last time * tick.  Unfortunately the Alpha designers made only the low 32-bits of * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz * part.  So we can't do the "find absolute time in terms of cycles" thing * that the other ports do. */voiddo_gettimeofday(struct timeval *tv){	unsigned long sec, usec, lost, flags;	unsigned long delta_cycles, delta_usec, partial_tick;	read_lock_irqsave(&xtime_lock, flags);	delta_cycles = rpcc() - state.last_time;	sec = xtime.tv_sec;	usec = xtime.tv_usec;	partial_tick = state.partial_tick;	lost = jiffies - wall_jiffies;	read_unlock_irqrestore(&xtime_lock, flags);#ifdef CONFIG_SMP	/* Until and unless we figure out how to get cpu cycle counters	   in sync and keep them there, we can't use the rpcc tricks.  */	delta_usec = lost * (1000000 / HZ);#else	/*	 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)	 *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)	 *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks)	 *	 * which, given a 600MHz cycle and a 1024Hz tick, has a	 * dynamic range of about 1.7e17, which is less than the	 * 1.8e19 in an unsigned long, so we are safe from overflow.	 *	 * Round, but with .5 up always, since .5 to even is harder	 * with no clear gain.	 */	delta_usec = (delta_cycles * state.scaled_ticks_per_cycle 		      + partial_tick		      + (lost << FIX_SHIFT)) * 15625;	delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;#endif	usec += delta_usec;	if (usec >= 1000000) {		sec += 1;		usec -= 1000000;	}	tv->tv_sec = sec;	tv->tv_usec = usec;}voiddo_settimeofday(struct timeval *tv){	unsigned long delta_usec;	long sec, usec;		write_lock_irq(&xtime_lock);	/* The offset that is added into time in do_gettimeofday above	   must be subtracted out here to keep a coherent view of the	   time.  Without this, a full-tick error is possible.  */#ifdef CONFIG_SMP	delta_usec = (jiffies - wall_jiffies) * (1000000 / HZ);#else	delta_usec = rpcc() - state.last_time;	delta_usec = (delta_usec * state.scaled_ticks_per_cycle 		      + state.partial_tick		      + ((jiffies - wall_jiffies) << FIX_SHIFT)) * 15625;	delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;#endif	sec = tv->tv_sec;	usec = tv->tv_usec;	usec -= delta_usec;	if (usec < 0) {		usec += 1000000;		sec -= 1;	}	xtime.tv_sec = sec;	xtime.tv_usec = usec;	time_adjust = 0;		/* stop active adjtime() */	time_status |= STA_UNSYNC;	time_maxerror = NTP_PHASE_LIMIT;	time_esterror = NTP_PHASE_LIMIT;	write_unlock_irq(&xtime_lock);}/* * In order to set the CMOS clock precisely, set_rtc_mmss has to be * called 500 ms after the second nowtime has started, because when * nowtime is written into the registers of the CMOS clock, it will * jump to the next second precisely 500 ms later. Check the Motorola * MC146818A or Dallas DS12887 data sheet for details. * * BUG: This routine does not handle hour overflow properly; it just *      sets the minutes. Usually you won't notice until after reboot! */extern int abs(int);static intset_rtc_mmss(unsigned long nowtime){	int retval = 0;	int real_seconds, real_minutes, cmos_minutes;	unsigned char save_control, save_freq_select;	/* irq are locally disabled here */	spin_lock(&rtc_lock);	/* Tell the clock it's being set */	save_control = CMOS_READ(RTC_CONTROL);	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);	/* Stop and reset prescaler */	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);	cmos_minutes = CMOS_READ(RTC_MINUTES);	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)		BCD_TO_BIN(cmos_minutes);	/*	 * since we're only adjusting minutes and seconds,	 * don't interfere with hour overflow. This avoids	 * messing with unknown time zones but requires your	 * RTC not to be off by more than 15 minutes	 */	real_seconds = nowtime % 60;	real_minutes = nowtime / 60;	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {		/* correct for half hour time zone */		real_minutes += 30;	}	real_minutes %= 60;	if (abs(real_minutes - cmos_minutes) < 30) {		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {			BIN_TO_BCD(real_seconds);			BIN_TO_BCD(real_minutes);		}		CMOS_WRITE(real_seconds,RTC_SECONDS);		CMOS_WRITE(real_minutes,RTC_MINUTES);	} else {		printk(KERN_WARNING		       "set_rtc_mmss: can't update from %d to %d\n",		       cmos_minutes, real_minutes); 		retval = -1;	}	/* The following flags have to be released exactly in this order,	 * otherwise the DS12887 (popular MC146818A clone with integrated	 * battery and quartz) will not reset the oscillator and will not	 * update precisely 500 ms later. You won't find this mentioned in	 * the Dallas Semiconductor data sheets, but who believes data	 * sheets anyway ...                           -- Markus Kuhn	 */	CMOS_WRITE(save_control, RTC_CONTROL);	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);	spin_unlock(&rtc_lock);	return retval;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -