📄 pci.c
字号:
/* * pci.c - Low-Level PCI Access in IA-64 * * Derived from bios32.c of i386 tree. */#include <linux/config.h>#include <linux/types.h>#include <linux/kernel.h>#include <linux/pci.h>#include <linux/init.h>#include <linux/ioport.h>#include <linux/slab.h>#include <linux/smp_lock.h>#include <linux/spinlock.h>#include <linux/acpi.h>#include <asm/machvec.h>#include <asm/page.h>#include <asm/segment.h>#include <asm/system.h>#include <asm/io.h>#include <asm/sal.h>#ifdef CONFIG_SMP# include <asm/smp.h>#endif#include <asm/irq.h>#undef DEBUG#define DEBUG#ifdef DEBUG#define DBG(x...) printk(x)#else#define DBG(x...)#endif#ifdef CONFIG_IA64_MCAextern void ia64_mca_check_errors( void );#endifstatic unsigned int acpi_root_bridges;struct pci_fixup pcibios_fixups[1];struct pci_ops *pci_root_ops;int (*pci_config_read)(int seg, int bus, int dev, int fn, int reg, int len, u32 *value);int (*pci_config_write)(int seg, int bus, int dev, int fn, int reg, int len, u32 value);/* * Low-level SAL-based PCI configuration access functions. Note that SAL * calls are already serialized (via sal_lock), so we don't need another * synchronization mechanism here. */#define PCI_SAL_ADDRESS(seg, bus, dev, fn, reg) \ ((u64)(seg << 24) | (u64)(bus << 16) | \ (u64)(dev << 11) | (u64)(fn << 8) | (u64)(reg))static intpci_sal_read (int seg, int bus, int dev, int fn, int reg, int len, u32 *value){ int result = 0; u64 data = 0; if (!value || (seg > 255) || (bus > 255) || (dev > 31) || (fn > 7) || (reg > 255)) return -EINVAL; result = ia64_sal_pci_config_read(PCI_SAL_ADDRESS(seg, bus, dev, fn, reg), len, &data); *value = (u32) data; return result;}static intpci_sal_write (int seg, int bus, int dev, int fn, int reg, int len, u32 value){ if ((seg > 255) || (bus > 255) || (dev > 31) || (fn > 7) || (reg > 255)) return -EINVAL; return ia64_sal_pci_config_write(PCI_SAL_ADDRESS(seg, bus, dev, fn, reg), len, value);}static intpci_sal_read_config_byte (struct pci_dev *dev, int where, u8 *value){ int result = 0; u32 data = 0; if (!value) return -EINVAL; result = pci_sal_read(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), where, 1, &data); *value = (u8) data; return result;}static intpci_sal_read_config_word (struct pci_dev *dev, int where, u16 *value){ int result = 0; u32 data = 0; if (!value) return -EINVAL; result = pci_sal_read(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), where, 2, &data); *value = (u16) data; return result;}static intpci_sal_read_config_dword (struct pci_dev *dev, int where, u32 *value){ if (!value) return -EINVAL; return pci_sal_read(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), where, 4, value);}static intpci_sal_write_config_byte (struct pci_dev *dev, int where, u8 value){ return pci_sal_write(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), where, 1, value);}static intpci_sal_write_config_word (struct pci_dev *dev, int where, u16 value){ return pci_sal_write(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), where, 2, value);}static intpci_sal_write_config_dword (struct pci_dev *dev, int where, u32 value){ return pci_sal_write(PCI_SEGMENT(dev), dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), where, 4, value);}struct pci_ops pci_sal_ops = { pci_sal_read_config_byte, pci_sal_read_config_word, pci_sal_read_config_dword, pci_sal_write_config_byte, pci_sal_write_config_word, pci_sal_write_config_dword};/* * Initialization. Uses the SAL interface */static struct pci_controller *alloc_pci_controller (int seg){ struct pci_controller *controller; controller = kmalloc(sizeof(*controller), GFP_KERNEL); if (!controller) return NULL; memset(controller, 0, sizeof(*controller)); controller->segment = seg; return controller;}static struct pci_bus *scan_root_bus (int bus, struct pci_ops *ops, void *sysdata){ struct pci_bus *b; /* * We know this is a new root bus we haven't seen before, so * scan it, even if we've seen the same bus number in a different * segment. */ b = kmalloc(sizeof(*b), GFP_KERNEL); if (!b) return NULL; memset(b, 0, sizeof(*b)); INIT_LIST_HEAD(&b->children); INIT_LIST_HEAD(&b->devices); list_add_tail(&b->node, &pci_root_buses); b->number = b->secondary = bus; b->resource[0] = &ioport_resource; b->resource[1] = &iomem_resource; b->sysdata = sysdata; b->ops = ops; b->subordinate = pci_do_scan_bus(b); return b;}static voidalloc_resource (char *name, struct resource *root, unsigned long start, unsigned long end, unsigned long flags){ struct resource *res; res = kmalloc(sizeof(*res), GFP_KERNEL); if (!res) return; memset(res, 0, sizeof(*res)); res->name = name; res->start = start; res->end = end; res->flags = flags; request_resource(root, res);}static u64add_io_space (acpi_resource_address64 *addr){ u64 offset; int sparse = 0; int i; if (addr->address_translation_offset == 0) return IO_SPACE_BASE(0); /* part of legacy IO space */ if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION) sparse = 1; offset = (u64) ioremap(addr->address_translation_offset, 0); for (i = 0; i < num_io_spaces; i++) if (io_space[i].mmio_base == offset && io_space[i].sparse == sparse) return IO_SPACE_BASE(i); if (num_io_spaces == MAX_IO_SPACES) { printk("Too many IO port spaces\n"); return ~0; } i = num_io_spaces++; io_space[i].mmio_base = offset; io_space[i].sparse = sparse; return IO_SPACE_BASE(i);}static acpi_statuscount_window (acpi_resource *resource, void *data){ unsigned int *windows = (unsigned int *) data; acpi_resource_address64 addr; acpi_status status; status = acpi_resource_to_address64(resource, &addr); if (ACPI_SUCCESS(status)) if (addr.resource_type == ACPI_MEMORY_RANGE || addr.resource_type == ACPI_IO_RANGE) (*windows)++; return AE_OK;}struct pci_root_info { struct pci_controller *controller; char *name;};static acpi_statusadd_window (acpi_resource *res, void *data){ struct pci_root_info *info = (struct pci_root_info *) data; struct pci_window *window; acpi_resource_address64 addr; acpi_status status; unsigned long flags, offset = 0; struct resource *root; status = acpi_resource_to_address64(res, &addr); if (ACPI_SUCCESS(status)) { if (addr.resource_type == ACPI_MEMORY_RANGE) { flags = IORESOURCE_MEM; root = &iomem_resource; offset = addr.address_translation_offset; } else if (addr.resource_type == ACPI_IO_RANGE) { flags = IORESOURCE_IO; root = &ioport_resource; offset = add_io_space(&addr); if (offset == ~0) return AE_OK; } else return AE_OK; window = &info->controller->window[info->controller->windows++]; window->resource.flags |= flags; window->resource.start = addr.min_address_range; window->resource.end = addr.max_address_range; window->offset = offset; alloc_resource(info->name, root, addr.min_address_range + offset, addr.max_address_range + offset, flags); } return AE_OK;}struct pci_bus *pcibios_scan_root (void *handle, int seg, int bus){ struct pci_root_info info; struct pci_controller *controller; unsigned int windows = 0; char *name; acpi_root_bridges++; controller = alloc_pci_controller(seg); if (!controller) goto out1; controller->acpi_handle = handle; acpi_walk_resources(handle, METHOD_NAME__CRS, count_window, &windows); controller->window = kmalloc(sizeof(*controller->window) * windows, GFP_KERNEL); if (!controller->window) goto out2; name = kmalloc(16, GFP_KERNEL); if (!name) goto out3; sprintf(name, "PCI Bus %02x:%02x", seg, bus); info.controller = controller; info.name = name; acpi_walk_resources(handle, METHOD_NAME__CRS, add_window, &info); return scan_root_bus(bus, pci_root_ops, controller);out3: kfree(controller->window);out2: kfree(controller);out1: return NULL;}void __initpcibios_config_init (void){ if (pci_root_ops) return; printk("PCI: Using SAL to access configuration space\n"); pci_root_ops = &pci_sal_ops; pci_config_read = pci_sal_read; pci_config_write = pci_sal_write; return;}void __initpcibios_init (void){# define PCI_BUSES_TO_SCAN 256 int i = 0; struct pci_controller *controller;#ifdef CONFIG_IA64_MCA ia64_mca_check_errors(); /* For post-failure MCA error logging */#endif pcibios_config_init(); platform_pci_fixup(0); /* phase 0 fixups (before buses scanned) */ /* Only probe blindly if ACPI didn't tell us about root bridges */ if (!acpi_root_bridges) { printk("PCI: Probing PCI hardware\n"); controller = alloc_pci_controller(0); if (controller) for (i = 0; i < PCI_BUSES_TO_SCAN; i++) pci_scan_bus(i, pci_root_ops, controller); } platform_pci_fixup(1); /* phase 1 fixups (after buses scanned) */ return;}void __initpcibios_fixup_device_resources (struct pci_dev *dev, struct pci_bus *bus){ struct pci_controller *controller = PCI_CONTROLLER(dev); struct pci_window *window; int i, j; for (i = 0; i < PCI_NUM_RESOURCES; i++) { if (!dev->resource[i].start) continue;#define contains(win, res) ((res)->start >= (win)->start && \ (res)->end <= (win)->end) for (j = 0; j < controller->windows; j++) { window = &controller->window[j]; if (((dev->resource[i].flags & IORESOURCE_MEM && window->resource.flags & IORESOURCE_MEM) || (dev->resource[i].flags & IORESOURCE_IO && window->resource.flags & IORESOURCE_IO)) && contains(&window->resource, &dev->resource[i])) { dev->resource[i].start += window->offset; dev->resource[i].end += window->offset; } } }}/* * Called after each bus is probed, but before its children are examined. */void __devinitpcibios_fixup_bus (struct pci_bus *b){ struct list_head *ln; for (ln = b->devices.next; ln != &b->devices; ln = ln->next) pcibios_fixup_device_resources(pci_dev_b(ln), b);}void __devinitpcibios_update_resource (struct pci_dev *dev, struct resource *root, struct resource *res, int resource){ unsigned long where, size; u32 reg; where = PCI_BASE_ADDRESS_0 + (resource * 4); size = res->end - res->start; pci_read_config_dword(dev, where, ®); reg = (reg & size) | (((u32)(res->start - root->start)) & ~size); pci_write_config_dword(dev, where, reg); /* ??? FIXME -- record old value for shutdown. */}void __devinitpcibios_update_irq (struct pci_dev *dev, int irq){ pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); /* ??? FIXME -- record old value for shutdown. */}void __devinitpcibios_fixup_pbus_ranges (struct pci_bus * bus, struct pbus_set_ranges_data * ranges){ ranges->io_start -= bus->resource[0]->start; ranges->io_end -= bus->resource[0]->start; ranges->mem_start -= bus->resource[1]->start; ranges->mem_end -= bus->resource[1]->start;}static inline intpcibios_enable_resources (struct pci_dev *dev, int mask){ u16 cmd, old_cmd; int idx; struct resource *r; if (!dev) return -EINVAL; pci_read_config_word(dev, PCI_COMMAND, &cmd); old_cmd = cmd; for (idx=0; idx<6; idx++) { /* Only set up the desired resources. */ if (!(mask & (1 << idx))) continue; r = &dev->resource[idx]; if (!r->start && r->end) { printk(KERN_ERR "PCI: Device %s not available because of resource collisions\n", dev->slot_name); return -EINVAL; } if (r->flags & IORESOURCE_IO) cmd |= PCI_COMMAND_IO; if (r->flags & IORESOURCE_MEM) cmd |= PCI_COMMAND_MEMORY; } if (dev->resource[PCI_ROM_RESOURCE].start) cmd |= PCI_COMMAND_MEMORY; if (cmd != old_cmd) { printk("PCI: Enabling device %s (%04x -> %04x)\n", dev->slot_name, old_cmd, cmd); pci_write_config_word(dev, PCI_COMMAND, cmd); } return 0;}intpcibios_enable_device (struct pci_dev *dev, int mask){ int ret; ret = pcibios_enable_resources(dev, mask); if (ret < 0) return ret; platform_pci_enable_device(dev); printk(KERN_INFO "PCI: Found IRQ %d for device %s\n", dev->irq, dev->slot_name); return 0;}voidpcibios_align_resource (void *data, struct resource *res, unsigned long size, unsigned long align){}/* * PCI BIOS setup, always defaults to SAL interface */char * __initpcibios_setup (char *str){ return NULL;}intpci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state, int write_combine){ /* * I/O space cannot be accessed via normal processor loads and stores on this * platform. */ if (mmap_state == pci_mmap_io) /* * XXX we could relax this for I/O spaces for which ACPI indicates that * the space is 1-to-1 mapped. But at the moment, we don't support * multiple PCI address spaces and the legacy I/O space is not 1-to-1 * mapped, so this is moot. */ return -EINVAL; /* * Leave vm_pgoff as-is, the PCI space address is the physical address on this * platform. */ vma->vm_flags |= (VM_SHM | VM_LOCKED | VM_IO); if (write_combine) vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); else vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); if (remap_page_range(vma->vm_start, vma->vm_pgoff << PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot)) return -EAGAIN; return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -