📄 macroblock.c
字号:
/*
***********************************************************************
* COPYRIGHT AND WARRANTY INFORMATION
*
* Copyright 2001, International Telecommunications Union, Geneva
*
* DISCLAIMER OF WARRANTY
*
* These software programs are available to the user without any
* license fee or royalty on an "as is" basis. The ITU disclaims
* any and all warranties, whether express, implied, or
* statutory, including any implied warranties of merchantability
* or of fitness for a particular purpose. In no event shall the
* contributor or the ITU be liable for any incidental, punitive, or
* consequential damages of any kind whatsoever arising from the
* use of these programs.
*
* This disclaimer of warranty extends to the user of these programs
* and user's customers, employees, agents, transferees, successors,
* and assigns.
*
* The ITU does not represent or warrant that the programs furnished
* hereunder are free of infringement of any third-party patents.
* Commercial implementations of ITU-T Recommendations, including
* shareware, may be subject to royalty fees to patent holders.
* Information regarding the ITU-T patent policy is available from
* the ITU Web site at http://www.itu.int.
*
* THIS IS NOT A GRANT OF PATENT RIGHTS - SEE THE ITU-T PATENT POLICY.
************************************************************************
*/
/*!
***********************************************************************
* \file macroblock.c
*
* \brief
* Decode a Macroblock
*
* \author
* Main contributors (see contributors.h for copyright, address and affiliation details)
* - Inge Lille-Lang鴜 <inge.lille-langoy@telenor.com>
* - Rickard Sjoberg <rickard.sjoberg@era.ericsson.se>
* - Jani Lainema <jani.lainema@nokia.com>
* - Sebastian Purreiter <sebastian.purreiter@mch.siemens.de>
* - Thomas Wedi <wedi@tnt.uni-hannover.de>
* - Detlev Marpe <marpe@hhi.de>
* - Gabi Blaettermann <blaetter@hhi.de>
* - Ye-Kui Wang <wyk@ieee.org>
***********************************************************************
*/
#include "contributors.h"
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include "global.h"
#include "mbuffer.h"
#include "elements.h"
#include "errorconcealment.h"
#include "macroblock.h"
#include "fmo.h"
#include "vlc.h"
static void SetMotionVectorPredictor (struct img_par *img,
int *pmv_x,
int *pmv_y,
int ref_frame,
int **refFrArr,
int ***tmp_mv,
int block_x,
int block_y,
int blockshape_x,
int blockshape_y);
void setMapMB_nr (struct img_par *img) //GB
{
int max_mb_row, x;
if (img->mb_frame_field_flag)
{
max_mb_row = (img->width/16);
x = img->current_mb_nr/(2*max_mb_row);
if (img->current_mb_nr % 2)
img->map_mb_nr = img->current_mb_nr/2 + (x+1) * max_mb_row;
else
img->map_mb_nr = img->current_mb_nr/2 + x * max_mb_row;
}
else
img->map_mb_nr = img->current_mb_nr;
}
/*!
************************************************************************
* \brief
* Checks the availability of neighboring macroblocks of
* the current macroblock for prediction and context determination;
* marks the unavailable MBs for intra prediction in the
* ipredmode-array by -1. Only neighboring MBs in the causal
* past of the current MB are checked.
************************************************************************
*/
//GB
void CheckAvailabilityOfNeighbors(struct img_par *img)
{
int i,j;
const int mb_width = img->width/MB_BLOCK_SIZE;
const int mb_nr = img->map_mb_nr;
Macroblock *currMB = &img->mb_data[mb_nr];
int check_value;
// mark all neighbors as unavailable
for (i=0; i<3; i++)
for (j=0; j<3; j++)
img->mb_data[mb_nr].mb_available[i][j]=NULL;
img->mb_data[mb_nr].mb_available[1][1]=currMB; // current MB
// Check MB to the left
if(img->pix_x >= MB_BLOCK_SIZE)
{
int remove_prediction = currMB->slice_nr != img->mb_data[mb_nr-1].slice_nr;
// upper blocks
if (remove_prediction || (img->constrained_intra_pred_flag && img->intra_block[mb_nr-1][1]==0))
{
img->ipredmode[img->block_x][img->block_y+1] = -1;
img->ipredmode[img->block_x][img->block_y+2] = -1;
}
// lower blocks
if (remove_prediction || (img->constrained_intra_pred_flag && img->intra_block[mb_nr-1][3]==0))
{
img->ipredmode[img->block_x][img->block_y+3] = -1;
img->ipredmode[img->block_x][img->block_y+4] = -1;
}
if (!remove_prediction)
{
currMB->mb_available[1][0]=&(img->mb_data[mb_nr-1]);
}
}
// Check MB above
check_value = (img->mb_frame_field_flag && img->mb_field)
? (img->pix_y >= 2*MB_BLOCK_SIZE)
: (img->pix_y >= MB_BLOCK_SIZE);
if(check_value) //GB //wrong for MBAFF
//if(img->pix_y >= MB_BLOCK_SIZE)
{
int remove_prediction = currMB->slice_nr != img->mb_data[mb_nr-mb_width].slice_nr;
// upper blocks
if (remove_prediction || (img->constrained_intra_pred_flag && img->intra_block[mb_nr-mb_width][2]==0))
{
img->ipredmode[img->block_x+1][img->block_y] = -1;
img->ipredmode[img->block_x+2][img->block_y] = -1;
}
// lower blocks
if (remove_prediction || (img->constrained_intra_pred_flag && img->intra_block[mb_nr-mb_width][3]==0))
{
img->ipredmode[img->block_x+3][img->block_y] = -1;
img->ipredmode[img->block_x+4][img->block_y] = -1;
}
if (!remove_prediction)
{
currMB->mb_available[0][1]=&(img->mb_data[mb_nr-mb_width]);
}
}
// Check MB left above
/*check_value = (img->mb_frame_field_flag && img->mb_field)
? (img->pix_y >= 2*MB_BLOCK_SIZE && img->pix_x >= MB_BLOCK_SIZE )
: (img->pix_x >= MB_BLOCK_SIZE && img->pix_y >= MB_BLOCK_SIZE );
if (check_value) //GB
{
if(currMB->slice_nr == img->mb_data[mb_nr-mb_width-1].slice_nr)
img->mb_data[mb_nr].mb_available[0][0]=&(img->mb_data[mb_nr-mb_width-1]);
}*/
if(img->pix_y >= MB_BLOCK_SIZE && img->pix_x >= MB_BLOCK_SIZE)
{
int remove_prediction = currMB->slice_nr != img->mb_data[mb_nr-mb_width-1].slice_nr;
if (remove_prediction || (img->constrained_intra_pred_flag && img->intra_block[mb_nr-mb_width-1][3]==0))
{
img->ipredmode[img->block_x][img->block_y] = -1;
}
if (!remove_prediction)
{
currMB->mb_available[0][0]=&(img->mb_data[mb_nr-mb_width-1]);
}
}
// Check MB right above
if(img->pix_y >= MB_BLOCK_SIZE && img->pix_x < (img->width-MB_BLOCK_SIZE ))
{
if(currMB->slice_nr == img->mb_data[mb_nr-mb_width+1].slice_nr)
currMB->mb_available[0][2]=&(img->mb_data[mb_nr-mb_width+1]);
}
if(img->mb_frame_field_flag)
currMB->mb_available[0][2] = NULL; // set the prediction from top right MB to zero
}
void CheckAvailabilityOfNeighborsForAff(struct img_par *img)
{
const int mb_width = img->width/MB_BLOCK_SIZE;
const int mb_nr = img->map_mb_nr;
Macroblock *currMB = &img->mb_data[mb_nr];
// Check Field to the left
if ((img->pix_x >= MB_BLOCK_SIZE) && (currMB->slice_nr == img->mb_data[mb_nr-1].slice_nr))
currMB->field_available[1]=&(img->mb_data[mb_nr-1]);
else
currMB->field_available[1]=NULL;
// Check Field above
if ((img->pix_y >= 2*MB_BLOCK_SIZE) && (currMB->slice_nr == img->mb_data[mb_nr-mb_width*2].slice_nr))
currMB->field_available[0]=&(img->mb_data[mb_nr-mb_width*2]);
else
currMB->field_available[0]=NULL;
}
/*!
************************************************************************
* \brief
* initializes the current macroblock
************************************************************************
*/
void start_macroblock(struct img_par *img,struct inp_par *inp, int CurrentMBInScanOrder)
{
int i,j,k,l;
Macroblock *currMB; // intialization code deleted, see below, StW
assert (img->current_mb_nr >=0 && img->current_mb_nr < img->max_mb_nr);
// img->current_mb_nr = CurrentMBInScanOrder;
//currMB = &img->mb_data[CurrentMBInScanOrder];
currMB = &img->mb_data[img->map_mb_nr];//GB
/* Update coordinates of the current macroblock */
if (img->mb_frame_field_flag)
{
img->mb_x = (img->current_mb_nr)%((2*img->width)/MB_BLOCK_SIZE);
img->mb_y = 2*((img->current_mb_nr)/((2*img->width)/MB_BLOCK_SIZE));
if (img->mb_x % 2)
{
img->mb_y++;
}
img->mb_x /= 2;
}
else
{
img->mb_x = (img->current_mb_nr)%(img->width/MB_BLOCK_SIZE);
img->mb_y = (img->current_mb_nr)/(img->width/MB_BLOCK_SIZE);
}
/* Define vertical positions */
img->block_y = img->mb_y * BLOCK_SIZE; /* luma block position */
img->pix_y = img->mb_y * MB_BLOCK_SIZE; /* luma macroblock position */
img->pix_c_y = img->mb_y * MB_BLOCK_SIZE/2; /* chroma macroblock position */
/* Define horizontal positions */
img->block_x = img->mb_x * BLOCK_SIZE; /* luma block position */
img->pix_x = img->mb_x * MB_BLOCK_SIZE; /* luma pixel position */
img->pix_c_x = img->mb_x * MB_BLOCK_SIZE/2; /* chroma pixel position */
// Save the slice number of this macroblock. When the macroblock below
// is coded it will use this to decide if prediction for above is possible
currMB->slice_nr = img->current_slice_nr;
// If MB is next to a slice boundary, mark neighboring blocks unavailable for prediction
if (img->mb_frame_field_flag==0)
CheckAvailabilityOfNeighbors(img); // support only slice mode 0 in MBINTLC1 at this time
// Reset syntax element entries in MB struct
currMB->qp = img->qp ;
currMB->mb_type = 0;
currMB->delta_quant = 0;
currMB->cbp = 0;
currMB->cbp_blk = 0;
currMB->c_ipred_mode= DC_PRED_8; //GB
for (l=0; l < 2; l++)
for (j=0; j < BLOCK_MULTIPLE; j++)
for (i=0; i < BLOCK_MULTIPLE; i++)
for (k=0; k < 2; k++)
currMB->mvd[l][j][i][k] = 0;
currMB->cbp_bits = 0;
// initialize img->m7 for ABT
for (j=0; j<MB_BLOCK_SIZE; j++)
for (i=0; i<MB_BLOCK_SIZE; i++)
img->m7[i][j] = 0;
// store filtering parameters for this MB
currMB->lf_disable = img->currentSlice->LFDisableIdc;
currMB->lf_alpha_c0_offset = img->currentSlice->LFAlphaC0Offset;
currMB->lf_beta_offset = img->currentSlice->LFBetaOffset;
}
/*!
************************************************************************
* \brief
* set coordinates of the next macroblock
* check end_of_slice condition
************************************************************************
*/
int exit_macroblock(struct img_par *img,struct inp_par *inp,int eos_bit)
{
Slice *currSlice = img->currentSlice;
//! The if() statement below resembles the original code, which tested
//! img->current_mb_nr == img->max_mb_nr. Both is, of course, nonsense
//! In an error prone environment, one can only be sure to have a new
//! picture by checking the tr of the next slice header!
// printf ("exit_macroblock: FmoGetLastMBOfPicture %d, img->current_mb_nr %d\n", FmoGetLastMBOfPicture(), img->current_mb_nr);
img->num_dec_mb++;
if (img->num_dec_mb == img->PicSizeInMbs)
// if (img->current_mb_nr == FmoGetLastMBOfPicture(currSlice->structure))
{
if (currSlice->next_header != EOS)
currSlice->next_header = SOP;
return TRUE;
}
// ask for last mb in the slice UVLC
else
{
// printf ("exit_macroblock: Slice %d old MB %d, now using MB %d\n", img->current_slice_nr, img->current_mb_nr, FmoGetNextMBNr (img->current_mb_nr));
img->current_mb_nr = FmoGetNextMBNr (img->current_mb_nr);
if (img->current_mb_nr == -1) // End of Slice group, MUST be end of slice
{
assert (nal_startcode_follows (img, inp, eos_bit) == TRUE);
return TRUE;
}
if(nal_startcode_follows(img, inp, eos_bit) == FALSE)
return FALSE;
if(img->type == I_SLICE || img->type == SI_SLICE || active_pps->entropy_coding_mode == CABAC)
return TRUE;
if(img->cod_counter<=0)
return TRUE;
return FALSE;
}
}
/*!
************************************************************************
* \brief
* Interpret the mb mode for P-Frames
************************************************************************
*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -