📄 fig12_6.pl
字号:
% Figure 12.6 Problem-specific procedures for the eight
% puzzle, to be used in best-first search of Figure 12.3.
/* Problem-specific procedures for the eight puzzle
Current situation is represented as a list of positions of the tiles,
with first item in the list corresponding to the empty square.
Example:
This position is represented by:
3 1 2 3
2 8 4 [2/2, 1/3, 2/3, 3/3, 3/2, 3/1, 2/1, 1/1, 1/2]
1 7 6 5
1 2 3
"Empty' can move to any of its neighbours which means
that "empty' and its neighbour interchange their positions.
*/
% s( Node, SuccessorNode, Cost)
s( [Empty | Tiles], [Tile | Tiles1], 1) :- % All arc costs are 1
swap( Empty, Tile, Tiles, Tiles1). % Swap Empty and Tile in Tiles
swap( Empty, Tile, [Tile | Ts], [Empty | Ts] ) :-
mandist( Empty, Tile, 1). % Manhattan distance = 1
swap( Empty, Tile, [T1 | Ts], [T1 | Ts1] ) :-
swap( Empty, Tile, Ts, Ts1).
mandist( X/Y, X1/Y1, D) :- % D is Manhhattan dist. between two squares
dif( X, X1, Dx),
dif( Y, Y1, Dy),
D is Dx + Dy.
dif( A, B, D) :- % D is |A-B|
D is A-B, D >= 0, !
;
D is B-A.
% Heuristic estimate h is the sum of distances of each tile
% from its "home' square plus 3 times "sequence' score
h( [Empty | Tiles], H) :-
goal( [Empty1 | GoalSquares] ),
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -