📄 asptarlmsnewt.m
字号:
% [k,w,b,u,P,y,e]=asptarlmsnewt(k,w,x,b,u,P,d,mu_p,mu_w,maxk)
%% Efficient implementation of the LMS-Newton algorithm.
% ARLMSNEWT uses autoregressive modeling of length M << L
% where M is the model length and L is the filter length.
% Assumption: the input x(n) is real and stationary for at
% least L samples and L > 2*M
% % Input Parameters [Size]::
% k : vector of lattice predictor coefficients [Mx1]
% w : vector of linear combiner coefficients [Lx1]
% x : vector of input samples [Lx1]
% b : vector of backward prediction error [Lx1]
% u : u = R^(-1)*x calculated recursively [Lx1]
% P : vector of last estimated power of b [M+1x1]
% d : desired response
% mu_p: adaptation constant for the predictor coefficients
% mu_w: adaptation constant for the combiner coefficient
% maxk: maximum allowed value of abs(k)
%
% Output parameters::
% k : updated lattice predictor coefficients
% w : updated linear combiner coefficients
% b : updated backward prediction error
% u : updated {R^(-1)*x}
% P : updated power estimate of b
% y : linear combiner output
% e : error signal [e = d - y]
%
% SEE ALSO INIT_ARLMSNEWT, MODEL_ARLMSNEWT
% Author : John Garas PhD.% Version 2.1, Release October 2002.% Copyright (c) DSP ALGORITHMS 2000-2002.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -