⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dct.cpp

📁 MPEG4音频视频压缩编码(含G.711/ACC/H.261等)
💻 CPP
📖 第 1 页 / 共 5 页
字号:
/* * dct.cc -- * *      DCT code, also contains MMX version * * Copyright (c) 1994-2002 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * A. Redistributions of source code must retain the above copyright notice, *    this list of conditions and the following disclaimer. * B. Redistributions in binary form must reproduce the above copyright notice, *    this list of conditions and the following disclaimer in the documentation *    and/or other materials provided with the distribution. * C. Neither the names of the copyright holders nor the names of its *    contributors may be used to endorse or promote products derived from this *    software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */#ifndef lintstatic const char rcsid[] =    "@(#) $Header$";#endif#include <sys/types.h>#include "bsd-endian.h"#include "dct.h"#include <stdio.h>/* conditional declaration */#if MMX_DCT_ENABLEDvoid domidct8x8llmW(short *inptr, short *quantptr, int *wsptr,			   u_char *outptr, int stride);#endif/* * Macros for fix-point (integer) arithmetic.  FP_NBITS gives the number * of binary digits past the decimal point.  FP_MUL computes the product * of two fixed point numbers.  A fixed point number and an integer * can be directly multiplied to give a fixed point number.  FP_SCALE * converts a floating point number to fixed point (and is used only * at startup, not by the dct engine).  FP_NORM converts a fixed * point number to scalar by rounding to the closest integer. * FP_JNORM is similar except it folds the jpeg bias of 128 into the * rounding addition. */#define FP_NBITS 15#define FP_MUL(a, b)	((((a) >> 5) * ((b) >> 5)) >> (FP_NBITS - 10))#define FP_SCALE(v)	(int)((double)(v) * double(1 << FP_NBITS) + 0.5)#define FP_NORM(v)	(((v) + (1 << (FP_NBITS-1))) >> FP_NBITS)#define FP_JNORM(v)	(((v) + (257 << (FP_NBITS-1))) >> FP_NBITS)#define M(n) ((m0 >> (n)) & 1)/* * This macro stolen from nv. *//* Sick little macro which will limit x to [0..255] with logical ops */#define LIMIT8(x, t) ((t = (x)), (t &= ~(t>>31)), (t | ~((t-256) >> 31)))#define LIMIT(x, t) (LIMIT8((x), t) & 0xff)#if 0wmay - not needed/* row order */const u_char ROWZAG[] = {	0,  1,  8, 16,  9,  2,  3, 10,	17, 24, 32, 25, 18, 11,  4,  5,	12, 19, 26, 33, 40, 48, 41, 34,	27, 20, 13,  6,  7, 14, 21, 28,	35, 42, 49, 56, 57, 50, 43, 36,	29, 22, 15, 23, 30, 37, 44, 51,	58, 59, 52, 45, 38, 31, 39, 46,	53, 60, 61, 54, 47, 55, 62, 63,	0,  0,  0,  0,  0,  0,  0,  0,	0,  0,  0,  0,  0,  0,  0,  0};#endif/* column order */const u_char DCT_COLZAG[] = {	0, 8, 1, 2, 9, 16, 24, 17,	10, 3, 4, 11, 18, 25, 32, 40,	33, 26, 19, 12, 5, 6, 13, 20,	27, 34, 41, 48, 56, 49, 42, 35,	28, 21, 14, 7, 15, 22, 29, 36,	43, 50, 57, 58, 51, 44, 37, 30,	23, 31, 38, 45, 52, 59, 60, 53,	46, 39, 47, 54, 61, 62, 55, 63,	0,  0,  0,  0,  0,  0,  0,  0,	0,  0,  0,  0,  0,  0,  0,  0};#define A1 FP_SCALE(0.7071068)#define A2 FP_SCALE(0.5411961)#define A3 A1#define A4 FP_SCALE(1.3065630)#define A5 FP_SCALE(0.3826834)#define FA1 (0.707106781f)#define FA2 (0.541196100f)#define FA3 FA1#define FA4 (1.306562965f)#define FA5 (0.382683433f)/* * these magic numbers are scaling factors for each coef of the 1-d * AA&N DCT.  The scale factor for coef 0 is 1 and coef 1<=n<=7 is * cos(n*PI/16)*sqrt(2).  There is also a normalization of sqrt(8). * Formally you divide by the scale factor but we multiply by the * inverse because it's faster.  So the numbers below are the inverse * of what was just described. */#define B0 0.35355339059327376220#define B1 0.25489778955207958447#define B2 0.27059805007309849220#define B3 0.30067244346752264027#define B4 0.35355339059327376220#define B5 0.44998811156820785231#define B6 0.65328148243818826392#define B7 1.28145772387075308943/* * Output multipliers for AA&N DCT * (i.e., first stage multipliers for inverse DCT). */static const double first_stage[8] = { B0, B1, B2, B3, B4, B5, B6, B7, };#ifdef _MSC_VER// 'initializing' : truncation from 'const double to float#pragma warning(disable: 4305)#endif/* * The first_stage array crossed with itself.  This allows us * to embed the first stage multipliers of the row pass by * computing scaled versions of the columns. */static const int cross_stage[64] = {	FP_SCALE(B0 * B0),	FP_SCALE(B0 * B1),	FP_SCALE(B0 * B2),	FP_SCALE(B0 * B3),	FP_SCALE(B0 * B4),	FP_SCALE(B0 * B5),	FP_SCALE(B0 * B6),	FP_SCALE(B0 * B7),	FP_SCALE(B1 * B0),	FP_SCALE(B1 * B1),	FP_SCALE(B1 * B2),	FP_SCALE(B1 * B3),	FP_SCALE(B1 * B4),	FP_SCALE(B1 * B5),	FP_SCALE(B1 * B6),	FP_SCALE(B1 * B7),	FP_SCALE(B2 * B0),	FP_SCALE(B2 * B1),	FP_SCALE(B2 * B2),	FP_SCALE(B2 * B3),	FP_SCALE(B2 * B4),	FP_SCALE(B2 * B5),	FP_SCALE(B2 * B6),	FP_SCALE(B2 * B7),	FP_SCALE(B3 * B0),	FP_SCALE(B3 * B1),	FP_SCALE(B3 * B2),	FP_SCALE(B3 * B3),	FP_SCALE(B3 * B4),	FP_SCALE(B3 * B5),	FP_SCALE(B3 * B6),	FP_SCALE(B3 * B7),	FP_SCALE(B4 * B0),	FP_SCALE(B4 * B1),	FP_SCALE(B4 * B2),	FP_SCALE(B4 * B3),	FP_SCALE(B4 * B4),	FP_SCALE(B4 * B5),	FP_SCALE(B4 * B6),	FP_SCALE(B4 * B7),	FP_SCALE(B5 * B0),	FP_SCALE(B5 * B1),	FP_SCALE(B5 * B2),	FP_SCALE(B5 * B3),	FP_SCALE(B5 * B4),	FP_SCALE(B5 * B5),	FP_SCALE(B5 * B6),	FP_SCALE(B5 * B7),	FP_SCALE(B6 * B0),	FP_SCALE(B6 * B1),	FP_SCALE(B6 * B2),	FP_SCALE(B6 * B3),	FP_SCALE(B6 * B4),	FP_SCALE(B6 * B5),	FP_SCALE(B6 * B6),	FP_SCALE(B6 * B7),	FP_SCALE(B7 * B0),	FP_SCALE(B7 * B1),	FP_SCALE(B7 * B2),	FP_SCALE(B7 * B3),	FP_SCALE(B7 * B4),	FP_SCALE(B7 * B5),	FP_SCALE(B7 * B6),	FP_SCALE(B7 * B7),};static const float f_cross_stage[64] = {    B0 * B0,    B0 * B1,    B0 * B2,    B0 * B3,    B0 * B4,    B0 * B5,    B0 * B6,    B0 * B7,    B1 * B0,    B1 * B1,    B1 * B2,    B1 * B3,    B1 * B4,    B1 * B5,    B1 * B6,    B1 * B7,    B2 * B0,    B2 * B1,    B2 * B2,    B2 * B3,    B2 * B4,    B2 * B5,    B2 * B6,    B2 * B7,    B3 * B0,    B3 * B1,    B3 * B2,    B3 * B3,    B3 * B4,    B3 * B5,    B3 * B6,    B3 * B7,    B4 * B0,    B4 * B1,    B4 * B2,    B4 * B3,    B4 * B4,    B4 * B5,    B4 * B6,    B4 * B7,    B5 * B0,    B5 * B1,    B5 * B2,    B5 * B3,    B5 * B4,    B5 * B5,    B5 * B6,    B5 * B7,    B6 * B0,    B6 * B1,    B6 * B2,    B6 * B3,    B6 * B4,    B6 * B5,    B6 * B6,    B6 * B7,    B7 * B0,    B7 * B1,    B7 * B2,    B7 * B3,    B7 * B4,    B7 * B5,    B7 * B6,    B7 * B7,};/* * Map a quantization table in natural, row-order, * into the qt input expected by rdct(). */#if 0wmay - not neededvoidrdct_fold_q(const int* in, int* out){#if !MMX_DCT_ENABLED	for (int i = 0; i < 64; ++i) {		/*		 * Fold column and row passes of the dct.		 * By scaling each column DCT independently,		 * we pre-bias all the row DCT's so the		 * first multiplier is already embedded		 * in the temporary result.  Thanks to		 * Martin Vetterli for explaining how		 * to do this.		 */		double v = double(in[i]);		v *= first_stage[i & 7];		v *= first_stage[i >> 3];		out[i] = FP_SCALE(v);	}#else	/* the MMX version of rdct() expects the quantization	 * table to be an array of short */	for (int i = 0; i < 64; i++)	  out[i] = in[i];#endif}#endif/* * Just like rdct_fold_q() but we divide by the quantizer. */voiddct_fdct_fold_q(const int* in, float* out){	for (int i = 0; i < 64; ++i) {		double v = first_stage[i >> 3];		v *= first_stage[i & 7];		double q = double(in[i]);		out[i] = (float) (v / q);	}}#if 0wmay - not neededvoid dcsum(int dc, u_char* in, u_char* out, int stride){	for (int k = 8; --k >= 0; ) {		int t;#ifdef INT_64		/*FIXME assume little-endian */		INT_64 i = *(INT_64*)in;		INT_64 o = (INT_64)LIMIT(dc + (i >> 56), t) << 56;		o |=  (INT_64)LIMIT(dc + (i >> 48 & 0xff), t) << 48;		o |=  (INT_64)LIMIT(dc + (i >> 40 & 0xff), t) << 40;		o |=  (INT_64)LIMIT(dc + (i >> 32 & 0xff), t) << 32;		o |=  (INT_64)LIMIT(dc + (i >> 24 & 0xff), t) << 24;		o |=  (INT_64)LIMIT(dc + (i >> 16 & 0xff), t) << 16;		o |=  (INT_64)LIMIT(dc + (i >> 8 & 0xff), t) << 8;		o |=  (INT_64)LIMIT(dc + (i & 0xff), t);		*(INT_64*)out = o;#else		u_int o = 0;		u_int i = *(u_int*)in;		SPLICE(o, LIMIT(dc + EXTRACT(i, 24), t), 24);		SPLICE(o, LIMIT(dc + EXTRACT(i, 16), t), 16);		SPLICE(o, LIMIT(dc + EXTRACT(i, 8), t), 8);		SPLICE(o, LIMIT(dc + EXTRACT(i, 0), t), 0);		*(u_int*)out = o;		o = 0;		i = *(u_int*)(in + 4);		SPLICE(o, LIMIT(dc + EXTRACT(i, 24),  t), 24);		SPLICE(o, LIMIT(dc + EXTRACT(i, 16), t), 16);		SPLICE(o, LIMIT(dc + EXTRACT(i, 8), t), 8);		SPLICE(o, LIMIT(dc + EXTRACT(i, 0), t), 0);		*(u_int*)(out + 4) = o;#endif		in += stride;		out += stride;	}}void dcsum2(int dc, u_char* in, u_char* out, int stride){	for (int k = 8; --k >= 0; ) {		int t;		u_int o = 0;		SPLICE(o, LIMIT(dc + in[0], t), 24);		SPLICE(o, LIMIT(dc + in[1], t), 16);		SPLICE(o, LIMIT(dc + in[2], t), 8);		SPLICE(o, LIMIT(dc + in[3], t), 0);		*(u_int*)out = o;		o = 0;		SPLICE(o, LIMIT(dc + in[4], t), 24);		SPLICE(o, LIMIT(dc + in[5], t), 16);		SPLICE(o, LIMIT(dc + in[6], t), 8);		SPLICE(o, LIMIT(dc + in[7], t), 0);		*(u_int*)(out + 4) = o;		in += stride;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -