📄 算法.txt
字号:
求 偶数阶魔方和的算法。
1)、当n为奇数时:采用连续斜行赋值法。首先把数1定在正中的下一格,数2定在1的斜行右下格,依此类推。即一般数i定在数i-1的斜行右下格(行数x列数y均增1)。直至当数i为n的倍数时,定在上一个数i-1格正下方的第2格(行数x增2,列数y不变)。按上述操作,格的位置(x,y)若超出n行n列的范围,按模n定位。即若出现x>n,则定在第x-n行;出现y>n,则定在第y-n列。
2)、当n为4的倍数时:采用对称元素交换法。首先把数n×n-1按行从上至下,奇数行从左至右,偶数行从右至左顺序填人方阵的n×n格。然后,把方阵的所有4×4子方阵中的两对角线上位置(即(i-j) mod 4=0||(i+j-1) mod 4=0,其中i为行号,j为列号)上的数固定下来不动;所有其它位置上的数关于方阵中心作对称交换,也就是把元素a(i,j)与元素a(n+1-i,n+1-j)的值交换。
3)、当n为非4倍数的偶数(即4m+2形)时:首先把大方阵分解为4个奇数(2m+1阶)子方阵。上述奇数阶魔方给分解的4个子方阵对应赋值,上左子方最小(i),下右子次小(i+v),下左子方最大(i+3v),上右子方次大(i+2v),即4个子方阵对应元素相差v,其中v=n*n/4,然后作相应的元素交换:
a(i,j)与a(i+u,j)在同一列做对应交换(j<t或j>n-t+2)
a(t,1)与a(t+u,1);a(t,t)与a(t+u,t)两对元素交换
其中u=n/2,t=(n+2)/4
上述交换使每行每列与两对角线上元素之和相等。
线性规划单纯形法VC源码
第一个,第一部分:
#include<stdio.h>
#include<math.h>
#include<iostream.h>
float matrix[100][100],x[100]; /* 记录总方程的数组,解的数组 */
int a[100]; /* 记录基础,非基础的解的情况,0:非基础,1:基础 */
int m,n,s,type; /* 方程变量,约束数,求最大最小值的类型,0:最小 1:最大 */
int indexe,indexl,indexg; /* 剩余变量,松弛变量,人工变量 */
void Jckxj()
{
int i,j;
for(i=0;i<n;i++)
for(j=0;j<s;j++)
if(matrix[i][j]==1&&a[j]==1){
x[j]=matrix[i][s];
j=s;
}
for(i=0;i<s;i++)
if(a[i]==0) x[i]=0;
}
int Rj()
{
int i;
for(i=0;i<s;i++)
if(fabs(matrix[n][i])>=0.000001)
if(matrix[n][i]<0) return 0;
return 1;
}
int Min()
{
int i,temp=0;
float min=matrix[n][0];
for(i=1;i<s;i++)
if(min>matrix[n][i]){
min=matrix[n][i];
temp=i;
}
return temp;
}
void JustArtificial()
{
int i;
for(i=m+indexe+indexl;i<s;i++)
if(fabs(x[i])>=0.000001){
printf("No Answer\n");
return;
}
}
int Check(int in)
{
int i;
float max1=-1;
for(i=0;i<n;i++)
if(fabs(matrix[i][in])>=0.000001&&max1<matrix[i][s]/matrix[i][in])
max1=matrix[i][s]/matrix[i][in];
if(max1<0)
return 1;
return 0;
}
int SearchOut(int *temp,int in)
{
int i;
float min=10000;
for(i=0;i<n;i++)
if(fabs(matrix[i][in])>=0.000001&&(matrix[i][s]/matrix[i][in]>=0)&&min>matrix[i][s]/matrix[i][in]){
min=matrix[i][s]/matrix[i][in];
*temp=i;
}
for(i=0;i<s;i++)
if(a[i]==1&&matrix[*temp][i]==1) return i;
}
void Mto(int in,int temp)
{
int i;
for(i=0;i<=s;i++)
if(i!=in)
matrix[temp][i]=matrix[temp][i]/matrix[temp][in];
matrix[temp][in]=1;
}
void Be(int temp,int in)
{
int i,j;
float c;
for(i=0;i<=n;i++){
c=matrix[i][in]/matrix[temp][in];
if(i!=temp)
for(j=0;j<=s;j++)
matrix[i][j]=matrix[i][j]-matrix[temp][j]*c;
}
}
void Achange(int in,int out)
{
int temp=a[in];
a[in]=a[out];
a[out]=temp;
}
void Print()
{
int i,j,k,temp=0;
for(i=0;i<n;i++){
for(k=temp;k<s;k++)
if(a[k]==1){
printf("X%d ",k);
temp=k+1;
k=s;
}
for(j=0;j<=s;j++)
printf("%8.2f",matrix[i][j]);
printf("\n");
}
printf("Rj ");
for(j=0;j<=s;j++)
printf("%8.2f",matrix[n][j]);
printf("\n");
}
void InitPrint()
{
int i;
printf("X");
for(i=0;i<s;i++)
printf(" a%d",i);
printf(" b\n");
Print();
printf("\n");
}
void Result()
{
int i;
printf(" (");
for(i=0;i<s;i++)
printf("%8.2f",x[i]);
printf(" ) ");
if(type==1)
printf(" Zmax=%f\n\n",matrix[n][s]);
else printf(" Zmin=%f\n\n",matrix[n][s]);
}
void PrintResult()
{
if(type==0) printf("The Minimal :%f\n",-matrix[n][s]);
else printf("The Maximum :%f\n",matrix[n][s]);
}
void Merge(float nget[][100],float nlet[][100],float net[][100],float b[])
{
int i,j;
for(i=0;i<n;i++){
for(j=m;j<m+indexe;j++)
if(nget[i][j-m]!=-1) matrix[i][j]=0;
else matrix[i][j]=-1;
for(j=m+indexe;j<m+indexe+indexl;j++)
if(nlet[i][j-m-indexe]!=1) matrix[i][j]=0;
else matrix[i][j]=1;
for(j=m+indexe+indexl;j<s;j++)
if(net[i][j-m-indexe-indexl]!=1) matrix[i][j]=0;
else matrix[i][j]=1;
matrix[i][s]=b[i];
}
for(i=m;i<m+indexe+indexl;i++)
matrix[n][i]=0;
for(i=m+indexe+indexl;i<s;i++)
matrix[n][i]=100;
matrix[n][s]=0;
}
void ProcessA()
{
int i;
for(i=0;i<m+indexe;i++)
a[i]=0;
for(i=m+indexe;i<s;i++)
a[i]=1;
}
第一个 第二部分
void Input(float b[],int code[])
{
int i=0,j=0;
printf("The equator Variable and Restrictor\n"); /* 输入方程变量和约束数 */
cin>>m>>n;
for(i=0;i<n;i++){
printf("Input b[] and Restrictor code 0:<= 1:= 2:>=\n"); /* 输入方程右边的值,code的值 */
cin>>b[i]>>code[i];
printf("The XiShu\n");
for(j=0;j<m;j++)
cin>>matrix[i][j]; /* 输入方程 */
}
printf("The Type 0:Min 1:Max \n"); /* 输入求最大值还是最小值 */
do{
cin>>type;
if(type!=0&&type!=1) printf("Error,ReInput\n");
}while(type!=0&&type!=1);
printf("The Z\n"); /* 输入z */
for(i=0;i<m;i++)
cin>>matrix[n][i];
if(type==1)
for(i=0;i<m;i++)
matrix[n][i]=-matrix[n][i];
}
void Xartificial()
{
int i,j,k;
if(indexg!=0){
for(i=m+indexe+indexl;i<s;i++){
for(j=0;j<n;j++)
if(matrix[j][i]==1){
for(k=0;k<=s;k++)
matrix[n][k]=matrix[n][k]-matrix[j][k]*100;
j=n;
}
}
}
}
void Process(float c[][100],int row,int vol)
{
int i;
for(i=0;i<n;i++)
if(i!=row) c[i][vol]=0;
}
void Sstart(float b[],int code[])
{
int i;
float nget[100][100],nlet[100][100],net[100][100]; /* 剩余变量数组,松弛变量数组,人工变量数组 */
indexe=indexl=indexg=0;
for(i=0;i<n;i++){
if(code[i]==0){nlet[i][indexl++]=1; Process(nlet,i,indexl-1);}
if(code[i]==1){ net[i][indexg++]=1; Process(net,i,indexg-1); }
if(code[i]==2){
net[i][indexg++]=1;
nget[i][indexe++]=-1;
Process(net,i,indexg-1); Process(nget,i,indexe-1);
}
}
s=indexe+indexl+indexg+m;
Merge(nget,nlet,net,b); /* 合并 */
ProcessA(); /* 初始化a[] */
InitPrint(); /* 初始化打印 */
Xartificial(); /* 消去人工变量 */
}
void Simplix() /* 单纯型算法 */
{
int in,out,temp=0;
while(1){
Jckxj(); /* 基础可行解 */
Print(); /* 打印 */
Result(); /* 打印结果 */
if(!Rj()) in=Min(); /* 求换入基 */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -