⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 §2 多目标遗传算法研究.htm

📁 Matlab遗传算法工具箱: Matlab遗传算法工具箱
💻 HTM
📖 第 1 页 / 共 5 页
字号:
stroked = "f"><v:textbox 
style="MARGIN-TOP: 4.093pt; LEFT: auto; MARGIN-LEFT: 7.468pt; WIDTH: 13pt; TOP: auto; HEIGHT: 17pt; mso-next-textbox: #_x0000_s1229"><![if !mso]>
<TABLE cellSpacing=0 cellPadding=0 width="100%">
  <TBODY>
  <TR>
    <TD><![endif]>
      <DIV>
      <P class=MsoNormal><SPAN lang=EN-US><SUB><v:shape id=_x0000_i1041 
      style="WIDTH: 12.75pt; HEIGHT: 17.25pt" o:ole="" type = "#_x0000_t75" 
      coordsize = "21600,21600" fillcolor = "winColor(17)"><v:imagedata 
      o:title="" src = 
      "./Chapter4.files/image013.wmz"></v:imagedata></v:shape></SUB><![if gte mso 9]><o:OLEObject Type="Embed"
     ProgID="Equation.3" ShapeID="_x0000_i1041" DrawAspect="Content"
     ObjectID="_1123618136">
    </o:OLEObject>
   <![endif]></SPAN></P></DIV><![if !mso]></TD></TR></TBODY></TABLE><![endif]></v:textbox></v:shape><v:shape 
id=_x0000_s3299 
style="MARGIN-TOP: 3.45pt; Z-INDEX: 569; MARGIN-LEFT: 136.05pt; WIDTH: 29.1pt; POSITION: absolute; HEIGHT: 24.95pt; mso-position-horizontal-relative: text; mso-position-vertical-relative: text" 
type = "#_x0000_t202" coordsize = "21600,21600" o:allowincell = "f" filled = "f" 
stroked = "f"><v:textbox 
style="MARGIN-TOP: 4.031pt; LEFT: auto; MARGIN-LEFT: 7.468pt; WIDTH: 14.718pt; TOP: auto; HEIGHT: 17.75pt; mso-next-textbox: #_x0000_s3299"><![if !mso]>
<TABLE cellSpacing=0 cellPadding=0 width="100%">
  <TBODY>
  <TR>
    <TD><![endif]>
      <DIV>
      <P class=MsoNormal><SPAN lang=EN-US><SUB><v:shape id=_x0000_i1042 
      style="WIDTH: 14.25pt; HEIGHT: 17.25pt" o:ole="" type = "#_x0000_t75" 
      coordsize = "21600,21600" fillcolor = "winColor(17)"><v:imagedata 
      o:title="" src = 
      "./Chapter4.files/image014.wmz"></v:imagedata></v:shape></SUB><![if gte mso 9]><o:OLEObject Type="Embed"
     ProgID="Equation.3" ShapeID="_x0000_i1042" DrawAspect="Content"
     ObjectID="_1123618137">
    </o:OLEObject>
   <![endif]></SPAN></P></DIV><![if !mso]></TD></TR></TBODY></TABLE><![endif]></v:textbox></v:shape><![endif]--><![if !vml]><span style='mso-ignore:vglayout'>

<table cellpadding=0 cellspacing=0 align=left>
 <tr>
  <td width=181 height=5></td>
 </tr>
 <tr>
  <td></td>
  <td><img width=231 height=162 src="./Chapter4.files/image015.gif" v:shapes="_x0000_s1219 _x0000_s1220 _x0000_s1223 _x0000_s1226 _x0000_s1228 _x0000_s1229 _x0000_s3299"></td>
 </tr>
</table>

</span><![endif]><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></SPAN></P>
<P class=MsoNormalIndent style="TEXT-INDENT: 0cm"><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><![if !supportEmptyParas]><![endif]>&nbsp;<o:p></o:p></SPAN></P>
<P class=MsoNormalIndent style="TEXT-INDENT: 0cm"><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><![if !supportEmptyParas]><![endif]>&nbsp;<o:p></o:p></SPAN></P>
<P class=MsoNormalIndent style="TEXT-INDENT: 0cm"><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><![if !supportEmptyParas]><![endif]>&nbsp;<o:p></o:p></SPAN></P>
<P class=MsoNormalIndent style="TEXT-INDENT: 0cm"><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><![if !supportEmptyParas]><![endif]>&nbsp;<o:p></o:p></SPAN></P>
<P class=MsoNormalIndent style="TEXT-INDENT: 0cm"><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><![if !supportEmptyParas]><![endif]>&nbsp;<o:p></o:p></SPAN></P>
<P class=MsoNormalIndent style="TEXT-INDENT: 0cm"><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><![if !supportEmptyParas]><![endif]>&nbsp;<o:p></o:p></SPAN></P>
<P class=MsoNormalIndent style="TEXT-INDENT: 0cm"><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><![if !supportEmptyParas]><![endif]>&nbsp;<o:p></o:p></SPAN></P>
<P class=MsoNormalIndent style="TEXT-INDENT: 0cm"><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><![if !supportEmptyParas]><![endif]>&nbsp;<o:p></o:p></SPAN></P><BR 
style="mso-ignore: vglayout" clear=all>
<P class=MsoNormalIndent style="TEXT-INDENT: 0cm; TEXT-ALIGN: center" 
align=center><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">图</SPAN><SPAN 
lang=EN-US style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt">4.1 </SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">加权法无法求出全部非劣解的例子</SPAN><SPAN 
lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><o:p></o:p></SPAN></P>
<P class=MsoNormalIndent 
style="TEXT-JUSTIFY: inter-ideograph; TEXT-INDENT: 0cm; TEXT-ALIGN: justify"><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-hansi-font-family: 'Times New Roman'">的初始阶段,但是初步的计算结果非常令人振奋,故本章另一个研究重点就放在了多目标非劣解集算法的研究上。<SPAN 
lang=EN-US><o:p></o:p></SPAN></SPAN></P>
<H2 style="TEXT-ALIGN: center" align=center><SPAN lang=EN-US 
style="FONT-FAMILY: 'Times New Roman'">§4.2</SPAN><SPAN 
style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">基于模糊逻辑的多目标遗传算法</SPAN><SPAN 
lang=EN-US 
style="FONT-SIZE: 12pt; mso-fareast-font-family: 宋体; mso-bidi-font-size: 10.0pt"><o:p></o:p></SPAN></H2>
<H3><SPAN lang=EN-US>§4.2.1 </SPAN><SPAN 
style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">模糊逻辑简介</SPAN></H3>
<P class=MsoNormalIndent 
style="TEXT-JUSTIFY: inter-ideograph; TEXT-INDENT: 0cm; TEXT-ALIGN: justify"><SPAN 
lang=EN-US style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><SPAN 
style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
</SPAN></SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">模糊逻辑(</SPAN><SPAN 
lang=EN-US style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt">Fuzzy 
Logic</SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">)是一种新型的分类方法(分类是集合论的基本概念之一)。模糊逻辑模仿人类的智慧,引入隶属度的概念,描述介于“真”与“假”中间的过渡过程。在模糊逻辑中,事件不以集合的极限值分类,而是给每一个元素赋予一个介于</SPAN><SPAN 
lang=EN-US style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt">0</SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">和</SPAN><SPAN 
lang=EN-US style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt">1</SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">之间的实数,描述其属于一个集合的强度。具体的介绍可以参考文献</SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-hansi-font-family: 'Times New Roman'">【<SPAN 
lang=EN-US>116】。</SPAN></SPAN><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><o:p></o:p></SPAN></P>
<H3><SPAN lang=EN-US>§4.2.2 </SPAN><SPAN 
style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">基于模糊逻辑的多目标遗传算法的思路和具体实现</SPAN></H3>
<P class=MsoNormal 
style="TEXT-JUSTIFY: inter-ideograph; TEXT-ALIGN: justify"><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><SPAN 
style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
</SPAN></SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">通过前面的介绍,我们知道采用模糊逻辑是一种很好的反应决策者主观意愿的工具。可以用模糊逻辑的方法反应决策者对于各个目标之间重要性的“权衡”信息。众所周知,遗传算法是依据个体的适应度进行,可以认为适应度就是决策者对于个体的综合评价,因而可以依据模糊逻辑的方法,直接构造决策者对于遗传个体的适应度的取值,即决策者对个体的综合评价。并以此作为遗传进化的依据和动力。下面是初步的算法步骤:</SPAN><SPAN 
lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><o:p></o:p></SPAN></P>
<P class=MsoNormal 
style="TEXT-JUSTIFY: inter-ideograph; TEXT-ALIGN: justify"><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">(</SPAN><SPAN 
lang=EN-US style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt">1</SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">)分别求出各单目标的最优解;</SPAN><SPAN 
lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><o:p></o:p></SPAN></P>
<P class=MsoNormal 
style="TEXT-JUSTIFY: inter-ideograph; TEXT-ALIGN: justify"><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">(</SPAN><SPAN 
lang=EN-US style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt">2</SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">)以(</SPAN><SPAN 
lang=EN-US style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt">1</SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">)中的单目标的最优解和决策者协商,给出各个目标满意度的隶属函数;</SPAN><SPAN 
lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><o:p></o:p></SPAN></P>
<P class=MsoNormal 
style="TEXT-JUSTIFY: inter-ideograph; TEXT-ALIGN: justify"><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">(</SPAN><SPAN 
lang=EN-US style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt">3</SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">)通过模糊逻辑表达决策者的想法,将各目标的满意度和个体的适应度联系起来;</SPAN><SPAN 
lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><o:p></o:p></SPAN></P>
<P class=MsoNormal 
style="TEXT-JUSTIFY: inter-ideograph; TEXT-ALIGN: justify"><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">(</SPAN><SPAN 
lang=EN-US style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt">4</SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">)以(</SPAN><SPAN 
lang=EN-US style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt">3</SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">)定义的适应度为基础采用遗传算法进行求解;</SPAN><SPAN 
lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><o:p></o:p></SPAN></P>
<P class=MsoNormal 
style="TEXT-JUSTIFY: inter-ideograph; TEXT-ALIGN: justify"><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><SPAN 
style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
</SPAN></SPAN><SPAN 
style="FONT-SIZE: 12pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'">之所以首先求解各个单目标的最优解,是希望能给决策者一个比较清晰的概念,即如果单独优化某个目标,可能的最优解是多少。有了这个信息,决策者才能给出令人置信的关于不同目标的满意度的隶属曲线。如果求解单目标优化的难度很大,也可以给出对单目标最优的一个估计值。</SPAN><SPAN 
lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><o:p></o:p></SPAN></P>
<P class=MsoNormal 
style="TEXT-JUSTIFY: inter-ideograph; TEXT-ALIGN: justify"><SPAN lang=EN-US 
style="FONT-SIZE: 12pt; mso-bidi-font-size: 10.0pt"><SPAN 
style="mso-spacerun: yes">&nbsp;&nbsp; </SPAN><SPAN 
style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</SPAN></SPAN><SPAN 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -