📄 decoder.c
字号:
/**************************************************************************
*
* XVID MPEG-4 VIDEO CODEC
* decoder main
*
* This program is an implementation of a part of one or more MPEG-4
* Video tools as specified in ISO/IEC 14496-2 standard. Those intending
* to use this software module in hardware or software products are
* advised that its use may infringe existing patents or copyrights, and
* any such use would be at such party's own risk. The original
* developer of this software module and his/her company, and subsequent
* editors and their companies, will have no liability for use of this
* software or modifications or derivatives thereof.
*
* This program is xvid_free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the xvid_free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the xvid_free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*************************************************************************/
/**************************************************************************
*
* History:
*
* 29.03.2002 interlacing fix - compensated block wasn't being used when
* reconstructing blocks, thus artifacts
* interlacing speedup - used transfers to re-interlace
* interlaced decoding should be as fast as progressive now
* 26.03.2002 interlacing support - moved transfers outside decode loop
* 26.12.2001 decoder_mbinter: dequant/idct moved within if(coded) block
* 22.12.2001 block based interpolation
* 01.12.2001 inital version; (c)2001 peter ross <pross@cs.rmit.edu.au>
*
*************************************************************************/
#include <stdlib.h>
#include <string.h> // memset
#include "xvid.h"
#include "portab.h"
#include "decoder.h"
#include "bitstream/bitstream.h"
#include "bitstream/mbcoding.h"
#include "quant/quant_h263.h"
#include "quant/quant_mpeg4.h"
#include "dct/idct.h"
#include "dct/fdct.h"
#include "utils/mem_transfer.h"
#include "image/interpolate8x8.h"
#include "bitstream/mbcoding.h"
#include "prediction/mbprediction.h"
#include "utils/timer.h"
#include "utils/emms.h"
#include "image/image.h"
#include "image/colorspace.h"
#include "utils/mem_align.h"
int decoder_alloc(XVID_DEC_PARAM * param)
{
param->handle = xvid_malloc(sizeof(DECODER), CACHE_LINE);
if (param->handle == NULL)
return XVID_ERR_MEMORY;
return XVID_ERR_OK;
}
int decoder_initialize (DECODER *dec)
{
dec->mb_width = (dec->width + 15) / 16;
dec->mb_height = (dec->height + 15) / 16;
dec->edged_width = 16 * dec->mb_width + 2 * EDGE_SIZE;
dec->edged_height = 16 * dec->mb_height + 2 * EDGE_SIZE;
if (image_create(&dec->cur, dec->edged_width, dec->edged_height))
{
xvid_free(dec);
return XVID_ERR_MEMORY;
}
if (image_create(&dec->refn, dec->edged_width, dec->edged_height))
{
image_destroy(&dec->cur, dec->edged_width, dec->edged_height);
xvid_free(dec);
return XVID_ERR_MEMORY;
}
dec->mbs = xvid_malloc(sizeof(MACROBLOCK) * dec->mb_width * dec->mb_height, CACHE_LINE);
if (dec->mbs == NULL)
{
image_destroy(&dec->cur, dec->edged_width, dec->edged_height);
xvid_free(dec);
return XVID_ERR_MEMORY;
}
init_timer();
return XVID_ERR_OK;
}
int decoder_create(XVID_DEC_PARAM * param)
{
DECODER *dec;
decoder_alloc(param);
if (param->handle == NULL) return XVID_ERR_MEMORY;
dec = param->handle;
dec->width = param->width;
dec->height = param->height;
return (decoder_initialize(dec));
}
int decoder_destroy(DECODER * dec)
{
if (dec->mbs != NULL)
xvid_free(dec->mbs);
image_destroy(&dec->refn, dec->edged_width, dec->edged_height);
image_destroy(&dec->cur, dec->edged_width, dec->edged_height);
xvid_free(dec);
write_timer();
return XVID_ERR_OK;
}
static const int32_t dquant_table[4] =
{
-1, -2, 1, 2
};
// decode an intra macroblock
static
void decoder_mbintra(DECODER * dec,
MACROBLOCK * pMB,
const uint32_t x_pos,
const uint32_t y_pos,
const uint32_t acpred_flag,
const uint32_t cbp,
Bitstream * bs,
const uint32_t quant,
const uint32_t intra_dc_threshold)
{
DECLARE_ALIGNED_MATRIX(block, 6, 64, int16_t, CACHE_LINE);
DECLARE_ALIGNED_MATRIX(data, 6, 64, int16_t, CACHE_LINE);
uint32_t stride = dec->edged_width;
uint32_t stride2 = stride / 2;
uint32_t next_block = stride * 8;
uint32_t i;
uint32_t iQuant = pMB->quant;
uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
pY_Cur = dec->cur.y + (y_pos << 4) * stride + (x_pos << 4);
pU_Cur = dec->cur.u + (y_pos << 3) * stride2 + (x_pos << 3);
pV_Cur = dec->cur.v + (y_pos << 3) * stride2 + (x_pos << 3);
memset(block, 0, 6*64*sizeof(int16_t)); // clear
for (i = 0; i < 6; i++)
{
uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4);
int16_t predictors[8];
int start_coeff;
start_timer();
predict_acdc(dec->mbs, x_pos, y_pos, dec->mb_width, i, &block[i*64], iQuant, iDcScaler, predictors);
if (!acpred_flag)
{
pMB->acpred_directions[i] = 0;
}
stop_prediction_timer();
if (quant < intra_dc_threshold)
{
int dc_size;
int dc_dif;
dc_size = i < 4 ? get_dc_size_lum(bs) : get_dc_size_chrom(bs);
dc_dif = dc_size ? get_dc_dif(bs, dc_size) : 0 ;
if (dc_size > 8)
{
BitstreamSkip(bs, 1); // marker
}
block[i*64 + 0] = dc_dif;
start_coeff = 1;
}
else
{
start_coeff = 0;
}
start_timer();
if (cbp & (1 << (5-i))) // coded
{
get_intra_block(bs, &block[i*64], pMB->acpred_directions[i], start_coeff);
}
stop_coding_timer();
start_timer();
add_acdc(pMB, i, &block[i*64], iDcScaler, predictors);
stop_prediction_timer();
start_timer();
if (dec->quant_type == 0)
{
dequant_intra(&data[i*64], &block[i*64], iQuant, iDcScaler);
}
else
{
dequant4_intra(&data[i*64], &block[i*64], iQuant, iDcScaler);
}
stop_iquant_timer();
start_timer();
idct(&data[i*64]);
stop_idct_timer();
}
if (dec->interlacing && pMB->field_dct)
{
next_block = stride;
stride *= 2;
}
start_timer();
transfer_16to8copy(pY_Cur, &data[0*64], stride);
transfer_16to8copy(pY_Cur + 8, &data[1*64], stride);
transfer_16to8copy(pY_Cur + next_block, &data[2*64], stride);
transfer_16to8copy(pY_Cur + 8 + next_block, &data[3*64], stride);
transfer_16to8copy(pU_Cur, &data[4*64], stride2);
transfer_16to8copy(pV_Cur, &data[5*64], stride2);
stop_transfer_timer();
}
#define SIGN(X) (((X)>0)?1:-1)
#define ABS(X) (((X)>0)?(X):-(X))
static const uint32_t roundtab[16] =
{ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 };
// decode an inter macroblock
static void decoder_mbinter(DECODER * dec,
const MACROBLOCK * pMB,
const uint32_t x_pos,
const uint32_t y_pos,
const uint32_t acpred_flag,
const uint32_t cbp,
Bitstream * bs,
const uint32_t quant,
const uint32_t rounding)
{
DECLARE_ALIGNED_MATRIX(block,6, 64, int16_t, CACHE_LINE);
DECLARE_ALIGNED_MATRIX(data, 6, 64, int16_t, CACHE_LINE);
uint32_t stride = dec->edged_width;
uint32_t stride2 = stride / 2;
uint32_t next_block = stride * 8;
uint32_t i;
uint32_t iQuant = pMB->quant;
uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
int uv_dx, uv_dy;
pY_Cur = dec->cur.y + (y_pos << 4) * stride + (x_pos << 4);
pU_Cur = dec->cur.u + (y_pos << 3) * stride2 + (x_pos << 3);
pV_Cur = dec->cur.v + (y_pos << 3) * stride2 + (x_pos << 3);
if (pMB->mode == MODE_INTER || pMB->mode == MODE_INTER_Q)
{
uv_dx = pMB->mvs[0].x;
uv_dy = pMB->mvs[0].y;
uv_dx = (uv_dx & 3) ? (uv_dx >> 1) | 1 : uv_dx / 2;
uv_dy = (uv_dy & 3) ? (uv_dy >> 1) | 1 : uv_dy / 2;
}
else
{
int sum;
sum = pMB->mvs[0].x + pMB->mvs[1].x + pMB->mvs[2].x + pMB->mvs[3].x;
uv_dx = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2) );
sum = pMB->mvs[0].y + pMB->mvs[1].y + pMB->mvs[2].y + pMB->mvs[3].y;
uv_dy = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2) );
}
start_timer();
interpolate8x8_switch(dec->cur.y, dec->refn.y, 16*x_pos, 16*y_pos , pMB->mvs[0].x, pMB->mvs[0].y, stride, rounding);
interpolate8x8_switch(dec->cur.y, dec->refn.y, 16*x_pos + 8, 16*y_pos , pMB->mvs[1].x, pMB->mvs[1].y, stride, rounding);
interpolate8x8_switch(dec->cur.y, dec->refn.y, 16*x_pos, 16*y_pos + 8, pMB->mvs[2].x, pMB->mvs[2].y, stride, rounding);
interpolate8x8_switch(dec->cur.y, dec->refn.y, 16*x_pos + 8, 16*y_pos + 8, pMB->mvs[3].x, pMB->mvs[3].y, stride, rounding);
interpolate8x8_switch(dec->cur.u, dec->refn.u, 8*x_pos, 8*y_pos, uv_dx, uv_dy, stride2, rounding);
interpolate8x8_switch(dec->cur.v, dec->refn.v, 8*x_pos, 8*y_pos, uv_dx, uv_dy, stride2, rounding);
stop_comp_timer();
for (i = 0; i < 6; i++)
{
if (cbp & (1 << (5-i))) // coded
{
memset(&block[i*64], 0, 64 * sizeof(int16_t)); // clear
start_timer();
get_inter_block(bs, &block[i*64]);
stop_coding_timer();
start_timer();
if (dec->quant_type == 0)
{
dequant_inter(&data[i*64], &block[i*64], iQuant);
}
else
{
dequant4_inter(&data[i*64], &block[i*64], iQuant);
}
stop_iquant_timer();
start_timer();
idct(&data[i*64]);
stop_idct_timer();
}
}
if (dec->interlacing && pMB->field_dct)
{
next_block = stride;
stride *= 2;
}
start_timer();
if (cbp & 32)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -