📄 extrcont.m
字号:
function [ret,x0,str,ts,xts]=extrcont(t,x,u,flag);
%EXTRCONT is the M-file description of the SIMULINK system named EXTRCONT.
% The block-diagram can be displayed by typing: EXTRCONT.
%
% SYS=EXTRCONT(T,X,U,FLAG) returns depending on FLAG certain
% system values given time point, T, current state vector, X,
% and input vector, U.
% FLAG is used to indicate the type of output to be returned in SYS.
%
% Setting FLAG=1 causes EXTRCONT to return state derivatives, FLAG=2
% discrete states, FLAG=3 system outputs and FLAG=4 next sample
% time. For more information and other options see SFUNC.
%
% Calling EXTRCONT with a FLAG of zero:
% [SIZES]=EXTRCONT([],[],[],0), returns a vector, SIZES, which
% contains the sizes of the state vector and other parameters.
% SIZES(1) number of states
% SIZES(2) number of discrete states
% SIZES(3) number of outputs
% SIZES(4) number of inputs.
% For the definition of other parameters in SIZES, see SFUNC.
% See also, TRIM, LINMOD, LINSIM, EULER, RK23, RK45, ADAMS, GEAR.
% Note: This M-file is only used for saving graphical information;
% after the model is loaded into memory an internal model
% representation is used.
% the system will take on the name of this mfile:
sys = mfilename;
new_system(sys)
simver(1.3)
if (0 == (nargin + nargout))
set_param(sys,'Location',[177,80,510,533])
open_system(sys)
end;
set_param(sys,'algorithm', 'RK-45')
set_param(sys,'Start time', '0')
set_param(sys,'Stop time', '10')
set_param(sys,'Min step size', '0.001')
set_param(sys,'Max step size', '0.01')
set_param(sys,'Relative error','0.001')
set_param(sys,'Return vars', '')
add_block('built-in/Note',[sys,'/','Controllers'])
set_param([sys,'/','Controllers'],...
'position',[150,5,155,10])
% Subsystem ['Double click',13,'on this for demo.5'].
new_system([sys,'/',['Double click',13,'on this for demo.5']])
set_param([sys,'/',['Double click',13,'on this for demo.5']],'Location',[-10,380,117,533])
set_param([sys,'/',['Double click',13,'on this for demo.5']],...
'Mask Display','LQG\nDEMOS',...
'Mask Dialogue','eval(''lqgdata; lqgdemos'')')
% Finished composite block ['Double click',13,'on this for demo.5'].
set_param([sys,'/',['Double click',13,'on this for demo.5']],...
'orientation',2,...
'hide name',0,...
'position',[120,174,191,210])
add_block('built-in/Note',[sys,'/','These require the Control System Toolbox.'])
set_param([sys,'/','These require the Control System Toolbox.'],...
'position',[154,38,159,43])
add_block('built-in/Discrete State-Space',[sys,'/',['Discrete-Time state',13,'estimator with',13,'continuous cost',13,'function.']])
set_param([sys,'/',['Discrete-Time state',13,'estimator with',13,'continuous cost',13,'function.']],...
'A','ae',...
'B','be',...
'C','ce',...
'D','de',...
'Sample time','Ts',...
'Mask Display','Discrete Kalman\nestimator')
set_param([sys,'/',['Discrete-Time state',13,'estimator with',13,'continuous cost',13,'function.']],...
'Mask Type','State estimator')
set_param([sys,'/',['Discrete-Time state',13,'estimator with',13,'continuous cost',13,'function.']],...
'Mask Dialogue','Discrete Kalman state estimator\nfor continuous plant.\n(Requires Control Toolbox)|[A,B;C,D] Matrices:|Number of states:|State noise covar. E[ww'']:|Output noise covar. E[vv'']:|Sample time:')
set_param([sys,'/',['Discrete-Time state',13,'estimator with',13,'continuous cost',13,'function.']],...
'Mask Translate','Ts=@5; n=@2; [ms,ns]=size(@1); a=@1(1:n,1:n); b=@1(1:n,n+1:ns); c=@1(n+1:ms,1:n); d=@1(1+n:ms,1+n:ns); [l,p]=lqed(a,eye(n,n),c,@3,@4,Ts); [ny,nu]=size(d); [ad,bd]=c2d(a,b,Ts); [ae,be,cexy,dexy]=destim(ad,bd,c,d,l,1:ny,1:nu); ce=cexy(ny+1:ny+n,:); de=dexy(ny+1:ny+n,:);')
set_param([sys,'/',['Discrete-Time state',13,'estimator with',13,'continuous cost',13,'function.']],...
'Mask Help','Implements a discrete-time Kalman state estimator using lqed and estim commands. Mask and unmask this block to see how it works.')
set_param([sys,'/',['Discrete-Time state',13,'estimator with',13,'continuous cost',13,'function.']],...
'Mask Entries','[a,b;c,d]\/length(a)\/0.001*b*b''\/eye(1)\/0.01\/',...
'position',[50,235,150,285])
add_block('built-in/Discrete State-Space',[sys,'/',['Discrete-Time',13,'linear regulator',13,'with continuous',13,'cost function.']])
set_param([sys,'/',['Discrete-Time',13,'linear regulator',13,'with continuous',13,'cost function.']],...
'A','[]',...
'B','[]',...
'C','[]',...
'D','k',...
'Sample time','Ts',...
'Mask Display','K[n+1]')
set_param([sys,'/',['Discrete-Time',13,'linear regulator',13,'with continuous',13,'cost function.']],...
'Mask Type','Discrete regulator')
set_param([sys,'/',['Discrete-Time',13,'linear regulator',13,'with continuous',13,'cost function.']],...
'Mask Dialogue','Discrete linear regulator\nfor continuous plant.\n(Requires Control Toolbox)|[A,B;C,D] Matrices:|Number of states:|Output weighting, y''Qy:|Input weighting, u''Ru:|Sample time:')
set_param([sys,'/',['Discrete-Time',13,'linear regulator',13,'with continuous',13,'cost function.']],...
'Mask Translate','Ts=@5; n=@2; [ms,ns]=size(@1); a=@1(1:n,1:n); b=@1(1:n,n+1:ns); c=@1(n+1:ms,1:n); d=@1(1+n:ms,1+n:ns); [k]=lqrd(a,b,c''*@3*c,@4+d''*@3*d,c''*@3*d,Ts); ')
set_param([sys,'/',['Discrete-Time',13,'linear regulator',13,'with continuous',13,'cost function.']],...
'Mask Help','Implements a discrete-time linear quadratic regulator using lqrd command. Mask and unmask this block to see how it works.')
set_param([sys,'/',['Discrete-Time',13,'linear regulator',13,'with continuous',13,'cost function.']],...
'Mask Entries','[a,b;c,d]\/length(a)\/10*eye(1,1)\/eye(1,1)\/0.01\/',...
'position',[195,230,255,290])
add_block('built-in/State-Space',[sys,'/','State Estimator'])
set_param([sys,'/','State Estimator'],...
'A','ae',...
'B','be',...
'C','ce',...
'D','de',...
'Mask Display','Kalman\nestimator',...
'Mask Type','State estimator')
set_param([sys,'/','State Estimator'],...
'Mask Dialogue','Continuous Kalman state estimator.\n(Requires Control Toolbox)|Plant A matrix:|Plant B matrix:|Plant C matrix:|Plant D matrix:|State noise covar. E[ww'']:|Output noise covar. E[vv'']:')
set_param([sys,'/','State Estimator'],...
'Mask Translate','[nx,nu]=size(@2); [l,p]=lqe(@1,eye(nx,nx),@3,@5,@6); [ny,nx]=size(@3); [ae,be,cexy,dexy]=estim(@1,@2,@3,@4,l,1:ny,1:nu); ce=cexy(ny+1:ny+nx,:); de=dexy(ny+1:ny+nx,:);')
set_param([sys,'/','State Estimator'],...
'Mask Help','Implements a Kalman state estimator using lqe and estim commands. Mask and unmask this block to see how it works.',...
'Mask Entries','a\/b\/c\/d\/0.001*b*b''\/0.01*eye(1,1)\/')
set_param([sys,'/','State Estimator'],...
'position',[40,85,130,135])
add_block('built-in/State-Space',[sys,'/',['Feedback Gain ',13,'using LQR Design.']])
set_param([sys,'/',['Feedback Gain ',13,'using LQR Design.']],...
'A','[]',...
'B','[]',...
'C','[]',...
'D','k',...
'Mask Display','K',...
'Mask Type','Regulator')
set_param([sys,'/',['Feedback Gain ',13,'using LQR Design.']],...
'Mask Dialogue','Linear quadratic regulator.\n(Requires Control Toolbox)|Plant A matrix:|Plant B matrix:|Plant C matrix:|Plant D matrix:|Output weighting, y''Qy:|Input weighting, u''Ru:')
set_param([sys,'/',['Feedback Gain ',13,'using LQR Design.']],...
'Mask Translate','[k]=lqry(@1,@2,@3,@4,@5,@6);',...
'Mask Help','Implements a linear state quadratic regulator. Mask and unmask this block to see how it works.')
set_param([sys,'/',['Feedback Gain ',13,'using LQR Design.']],...
'Mask Entries','a\/b\/c\/d\/eye(1,1)\/eye(1,1)\/',...
'position',[190,75,260,135])
add_block('built-in/Discrete State-Space',[sys,'/','S-Domain to Z-Domain'])
set_param([sys,'/','S-Domain to Z-Domain'],...
'A','ad',...
'B','bd',...
'C','c',...
'D','d',...
'Sample time','Ts',...
'Mask Display','dpoly(nd,dd,''z'')',...
'Mask Type','c2d')
set_param([sys,'/','S-Domain to Z-Domain'],...
'Mask Dialogue','Vector expressions for numerator and \ndenominator in the s-domain\n(Requires Control Toolbox).|Numerator:|Denominator:|Sample time:')
set_param([sys,'/','S-Domain to Z-Domain'],...
'Mask Translate','[a,b,c,d]=tf2ss(@1,@2); Ts=@3; [ad,bd]=c2d(a,b,Ts(1)); [nd,dd]=ss2tf(ad,bd,c,d,1);')
set_param([sys,'/','S-Domain to Z-Domain'],...
'Mask Help','This block takes expressions for numerator in the s-domain and converts them to the z-domain using zero-order hold approximation. Need control toolbox''s c2d command.')
set_param([sys,'/','S-Domain to Z-Domain'],...
'Mask Entries','[1]\/[1 1]\/1\/',...
'position',[125,349,190,391])
% Return any arguments.
if (nargin | nargout)
% Must use feval here to access system in memory
if (nargin > 3)
if (flag == 0)
eval(['[ret,x0,str,ts,xts]=',sys,'(t,x,u,flag);'])
else
eval(['ret =', sys,'(t,x,u,flag);'])
end
else
[ret,x0,str,ts,xts] = feval(sys);
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -