📄 zerocouponbond.java
字号:
/* WARANTY NOTICE AND COPYRIGHTThis program is free software; you can redistribute it and/ormodify it under the terms of the GNU General Public Licenseas published by the Free Software Foundation; either version 2of the License, or (at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.Copyright (C) Michael J. Meyermatmjm@mindspring.comspyqqqdia@yahoo.com*//* * ZeroCouponBond.java * * Created on September 6, 2002, 7:32 PM */package Libor.LiborDerivatives;import Libor.LiborProcess.*;import Statistics.*;/** <p>A zero coupon bond is the simplest example of a Libor derivative. * The payoff is the constant random variable <code>1</code>. Zero coupon bond * prices can also be computed directly from the Libors. In this way the * Zero coupon bond as a Libor derivative is a test case of a Libor * derivative with known analytic price. This can be used to validate * model correctness, to see how well the log-normal Libor approximations * work in the pricing of derivatives etc.</p> * * <p>Our implementation assumes that the bond matures at a Libor reset time * <code>T_i<code>.</p> * * @author Michael J. Meyer */public class ZeroCouponBond extends LiborDerivative { int i; // bond matures at T_i /******************************************************************************* * * CONSTRUCTOR * ******************************************************************************/ /** * @param LP underlying Libor process. * @param i bond matures at time <code>T_i</code>, must satisfy * <code>0<i<=n</code>. */ public ZeroCouponBond(LiborProcess LP, int i) { // Libors needed to transport payoff 1 forward from time T_i // to time T_n are L_j, j>=i and they are needed at time t=T_i. super(LP,i,i,LP.X0LiborVector(i)); this.i=i; super.controlVariateNeedsX0=false; // no control variate implemented super.controlVariateNeedsX1=false; } /******************************************************************************* * * FORWARD TRANSPORTED PAYOFF * ******************************************************************************/ /** The payoff 1 at time <code>T_i</code> transported forward to time * <code>T_n</code>, value in current Libor path. */ public double currentForwardPayoff() { double h=1; // payoff at time T_i // move this forward from time T_i to time T_n return h*LP.forwardTransport(i); } /** <p>The forward transported payoff (as seen from time <code>t=0</code>) * computed from a new sample of the <code>LiborVector</code> object * <code>U=(X^0_i(T_i),...,X^0_{n-1}(T_i))</code>, a log-normal * approximating to the vector of true Libors * <code>U=(X_i(T_i),...,X_{n-1}(T_i))</code>. * Recall <code>X_j(t)=delta_jL_j(t)</code>, see document * <i>LiborProcess.ps</i>.</p> */ public double lognormalForwardPayoffSample() { double[] U=LV.getValue(0); double f=1; // move this forward from time T_i to time T_n // note index downshift j->j-i since U starts with X_i. for(int j=i;j<n;j++)f*=1+U[j-i]; return f; } /******************************************************************************* * * ANALYTIC PRICE * ******************************************************************************/ /** Analytic <code>T_n</code>-forward price at time <code>t</code>. * * @param t current discrete time. */ public double analyticForwardPrice(int t) { return LP.forwardTransport(t,i); } /******************************************************************************* * * TEST PROGRAM * ******************************************************************************/ /** <p>Test program. Allocates a Libor process of dimension * <code>n=20</code> the zero coupon bond maturing at time * <code>T_10</code>.</p> * * <p>Then computes the Monte Carlo forward price of this zero coupon bond * at time <code>T_n</code> and compares it to the analytic * price computed directly from the Libors and to the Monte Carlo price * based on the log-normal Libor approximation <code>X0</code>. * The forward transporting and discounting involves all Libors * <code>L_j, j>=10</code>.</p> */ public static void main(String[] args) { // Libor process setup int n=20, // dimension of Libor process i=10; // bond matures at T_i // Libor parameter sample final LMM_Parameters lmmParams=new LMM_Parameters(n,LMM_Parameters.CS); final LiborProcess LP=new LiborProcess(lmmParams); final LiborDerivative H=new ZeroCouponBond(LP,i); // all prices forward prices at time T_n double aprice, // analytic price mcprice, // Monte carlo price lgnprice; // log-normal price int nPath=40000; // number of Libor paths System.out.println ("\nZero coupon bond forward price, "+nPath+" paths:"); aprice=H.analyticForwardPrice(0); mcprice=H.monteCarloForwardPrice(0,nPath); lgnprice=H.lognormalMonteCarloForwardPrice(nPath); aprice=FinMath.round(aprice,8); mcprice=FinMath.round(mcprice,8); lgnprice=FinMath.round(lgnprice,8); String report= "analytic: "+aprice+"\n"+ "Monte Carlo: "+mcprice+"\n"+ "lognormal Monte Carlo: "+lgnprice; System.out.println(report); } // end main } // end ZeroCouponBond
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -