⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 callablereversefloater.java

📁 金融资产定价,随机过程,MONTE CARLO 模拟 JAVA 程序和文档资料
💻 JAVA
字号:
/* WARANTY NOTICE AND COPYRIGHTThis program is free software; you can redistribute it and/ormodify it under the terms of the GNU General Public Licenseas published by the Free Software Foundation; either version 2of the License, or (at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.Copyright (C) Michael J. Meyermatmjm@mindspring.comspyqqqdia@yahoo.com*//* * CallableReverseFloater.java * * Created on September 10, 2002, 6:11 PM */package Libor.LiborDerivatives;import Libor.LiborProcess.*;import Statistics.*;import Exceptions.*;import LinAlg.*;/** The callable reverse floater <code>CRF(p,q,K1,K2)</code> is simply *  a call on the {@link ReverseFloater} <code>RF(p,q,K1,K2)</code> with zero  *  strike expiring at time <code>T_p</code>.</p> * * <p>This call is exercised precisely if the value of the reverse floater * at time <code>T_p</code> is positive and hence has payoff * <code>max(RF(T_p),0)</code> where <code>RF(T_p)</code> denotes the price * of the reverse floater at time <code>T_p</code>. * * @author  Michael J. Meyer */public class CallableReverseFloater extends LiborDerivative {                  int p,q;          //interval [T_p,T_q]     double K1,K2;         ReverseFloater RF;    // the underlying reverse floater     //LiborDerivative::T_max = T_p (check the control variate)    //Liborderivative::k = p        /******************************************************************************* * *                           CONSTRUCTOR * ******************************************************************************/           /** <p>Libors <code>L_j</code> needed for <code>j&gt;=p</code> and until time      *  <code>T_p</code>.</p>     *     * @param LP underlying Libor process.     * @param p accrual starts <code>T_p</code>.     * @param q accrual stops <code>T_q</code>, with      * <code>0&lt;p&lt;q&lt;=n</code>.     * @param K1 see {@link ReverseFloater}.     * @param K2 see ReverseFloater.     *      */    public CallableReverseFloater    (LiborProcess LP, int p, int q, double K1, double K2)     {        // Libors needed to transport payoff 1 forward from time T_i        // to time T_n are L_j, j>=i and they are needed at time t=T_i.        super(LP,p,p);        this.p=p;        this.q=q;        this.K1=K1;        this.K2=K2;        RF=new ReverseFloater(LP,p,q,K1,K2);        super.hasControlVariate=true;        super.controlVariateNeedsX0=false;    // no control variate implemented        super.controlVariateNeedsX1=false;             }    /******************************************************************************* * *                        FORWARD TRANSPORTED PAYOFF * ******************************************************************************/                   /** The payoff at time <code>T_p</code> is simply the price      *  transported forward to time     *  <code>T_n</code>, value in current Libor path.     */    public double currentForwardPayoff()    {         return Math.max(RF.analyticForwardPrice(p),0);    }                  /******************************************************************************* * *                            CONTROL VARIATE * ******************************************************************************/                 /** Mean of the control variate conditioned on the state of the      *  Libor path at time <code>t</code>. This is simply      *  <code>(B_p(t)-B_q(t))/B_n(t)</code>       * (a <code>P_n</code>-martingale). See <i>LiborProcess.ps</i>.      *      * @param t current discrete time <code>t&lt;=p</code>.      */     public double controlVariateMean(int t)     {          return LP.forwardTransport(t,p)-LP.forwardTransport(t,q);     }              /** Control variate is sum of forward transported Libors      *  <code>(B_p(T_p)-B_q(T_p))/B_n(T_p)(1-B_q(T_p))/B_n(T_p)</code>.       *  See <i>LiborProcess.ps</i>       */     public double[] currentControlledForwardPayoff()     {         double h=currentForwardPayoff(),                cv=LP.forwardTransport(p,p)-LP.forwardTransport(p,q);                  return new double[] {h,cv};       }               /******************************************************************************* * *                              TEST PROGRAM * ******************************************************************************/        /** <p>Test program. Allocates a Libor process of dimension       *  <code>n=15</code> and prices calleable reverse floater      *  <code>CRF(p,q,K1,K2)</code> with       *  <code>p=5, q=15, K1=0.09, K2=0.03</code>. All Libors are intialized      *  at <code>L_j(0)=0.04</code>.</p>      *      *  <p>Computes the Monte Carlo forward price of the calleable reverse       *  floater with and without control variates and the correlation of the       *  payoff to the control variate.</p>      */     public static void main(String[] args)     {         // Libor process setup         int n=15,            // dimension of Libor process             p=8, q=15;       // accrual period [T_p,T_q]                  double K1=0.09, K2=0.03;                // Libor parameter sample          final LMM_Parameters lmmParams=new LMM_Parameters(n,LMM_Parameters.CS);         final LiborProcess LP=new LiborProcess(lmmParams);                final LiborDerivative crf=new CallableReverseFloater(LP,p,q,K1,K2);                // all prices forward prices at time T_n         double mcprice,              // Monte carlo price                cvmcprice;            // Monte carlo price with control variate         int nPath=40000;             // number of Libor paths                  System.out.print         ("\nCALLABLE REVERSE FLOATER: \n"+          "Correlation of payoff with control variate, "+nPath/4+" paths: ");         double cvcorr=crf.controlledForwardPayoff().                           correlationWithControlVariate(0,nPath/4);         cvcorr=FinMath.round(cvcorr,4);         System.out.print(cvcorr+"\n\nPrice, "+nPath+" paths:\n\n");                 // move full Libor path to time t=T_3         LP.newPath(3,0);                     // all prices computed at time t=T_3         mcprice=crf.monteCarloForwardPrice(3,nPath);         cvmcprice=crf.controlledMonteCarloForwardPrice(3,nPath);                  mcprice=FinMath.round(mcprice,8);         cvmcprice=FinMath.round(cvmcprice,8);         String report=         "Monte Carlo: "+mcprice+"\n"+         "Controlled Monte Carlo: "+cvmcprice;         System.out.println(report);                    } // end main } // end ReverseFloater

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -