⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gamblersfortune_1.java

📁 金融资产定价,随机过程,MONTE CARLO 模拟 JAVA 程序和文档资料
💻 JAVA
字号:
/* WARANTY NOTICE AND COPYRIGHTThis program is free software; you can redistribute it and/ormodify it under the terms of the GNU General Public Licenseas published by the Free Software Foundation; either version 2of the License, or (at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.Copyright (C) Michael J. Meyermatmjm@mindspring.comspyqqqdia@yahoo.com*//* * GamblersFortune_1.java * * Created on January 23, 2002, 6:20 PM */  package Examples.Probability;import Statistics.*;import Processes.*;import java.lang.Math.*; /** <p> Gambler starts with 6 dollars and bets 1 dollar on unfavorably loaded * coin (0.49/0.51) until he has 10 dollars or is wiped out. Random walk * allocated as a Markov chain. Possible states of the fortune 0,1,2,...,10. * Computes terminal (equilibrium) probability distribution.</p> * * @author  Michael J. Meyer */public class GamblersFortune_1{    public static void main(String[] args)    {             final int T=2000;        //time steps to horizon         double j_0=6;            //initial fortune                 final double p=0.49;  //probability of success                  String message=          "Gambler starts with 6 dollars and bets 1 dollar on unfavorably\n"+           "loaded coin (0.49/0.51) until he has 10 dollars or is wiped out.\n"+           "Possible states of the fortune 0,1,2,...,10.\n\n"+          "Probabilities of being in state j=0,1,...,10 at time T= "+T+          ":\nPatience it takes a while:\n";          System.out.println(message);              /* allocate gamblers fortune as a Markov chain on the fly by defining           * the transition probabilities q(t,i,j) in the body of the           * constructor call          */         final MarkovChain gf=new MarkovChain(T,j_0){                 public double q(int t, int i, int j)             {                 if((i==0)&&(j==0)) return 1;                 if ((i==10)&&(j==10)) return 1;                 if((i>0)&&(i<10))                 {                     if(j==i-1) return 1-p;                     if(j==i+1) return p;     }                                 return 0;    // all other cases              } //end q                   };// end gf               //allocate the ramdom vector  X=(1_{[gf_T=j]})_{j=0,...,10}          RandomVector X=new RandomVector(11){                    public double[] getValue(int t)               {                   double[] x=new double[11];                   double[] path=gf.get_path();                   gf.newPathBranch(t);                   x[(int)path[T]]=1;    //all other components zero                   return x;                } //end getValue                    }; // end X                    //expectation of X over 10000 paths          double[] Q=X.expectation(10000);               for(int i=0;i<11;i++)          {              Q[i]=1.0*Math.round(1000*Q[i])/1000;              System.out.print(Q[i]+" ");           }                 } // end main       } // end GamblersFortune_1                                                                                             

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -