⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dirichletproblem.java

📁 金融资产定价,随机过程,MONTE CARLO 模拟 JAVA 程序和文档资料
💻 JAVA
字号:
/* WARANTY NOTICE AND COPYRIGHTThis program is free software; you can redistribute it and/ormodify it under the terms of the GNU General Public Licenseas published by the Free Software Foundation; either version 2of the License, or (at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.Copyright (C) Michael J. Meyermatmjm@mindspring.comspyqqqdia@yahoo.com*//* * DirichletProblem.java * * Created on January 22, 2002, 8:00 PM */  package Examples.Probability;import Statistics.*;import Processes.*;import java.lang.Math.*; /** <p> We solve the Dirichlet problem on the unit disk with boundary function  * h(x,y)=x*y (which is harmonic on the entire plane). Thus the solution  * is given by the same formula on the interior of the disc.</p> *  * <p>Fixing the point x=(1/4,1/4) we compute the solution f(x) as * f(x)=E(h(B_tau)), where B is a two dimensional Brownian motion  * started at the point x and tau the first time B hits the boundary  * of the disc.</p> * * <p>As a proxy for the point at which the Brownian motion hits the boundary * we take the first point a past the boundary projected radially back  * on the circle, ie.: a/||a||.</p> * * @author  Michael J. Meyer */public class DirichletProblem{    /** projects the point (u,v) radially on the unit circle */    public static double[] boundaryProjection(double[] x)    {        double u=x[0], v=x[1], f=Math.sqrt(u*u+v*v);        double[] result={u/f,v/f};        return result;    }               public static void main (String[] args)    {                int T=50000,      //time steps to horizon            dim=2;        //dimension        double dt=0.001;  //size of time step                double[] x={0.25,0.25};  //starting point                        //allocate a two dimensional Brownian motion starting at x        final VectorBrownianMotion B=new VectorBrownianMotion(dim,T,dt,x);                        //define the unit disc as a two dimensional region        Region_nD disc=new Region_nD(){                     public boolean isMember(double[] z)             {                  double u=z[0], v=z[1];                  return (u*u+v*v<1);       }                          }; //end disc                        //allocate the hitting time for the boundary        final StoppingTime tau=new FirstExitTime_nD(B,disc);                        // allocate the random variable h(B_tau)         RandomVariable hB_tau=new RandomVariable(){                    public double getValue(int t)            {                double[] z=boundaryProjection(B.sampledAt(tau).getValue(t));                double u=z[0], v=z[1];                return u*v;             }                      }; // end hB_tau                                //compute f(x)=E(h(B_tau)) over 20000 paths         //this should be 0.25*0.25=0.0625        double fx=hB_tau.expectation(40000);        //cut this down to 5 decimals        fx=1.0*Math.round(10000*fx)/10000;                String message="The solution f(x) at x=(1/2,1/2) should be 0.0625\n"+                       "and is computed as "+fx;                               System.out.println(message);            } // end main    } // end DirichletProblem/** REMARK: *  The horizon T has to be chosen large enough and the time step dt small enough  *  for this to work well. The computation does take some time! */                                                

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -