⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lapack.h

📁 图像分割算法
💻 H
📖 第 1 页 / 共 2 页
字号:
//Copyright (c) 2004-2005, Baris Sumengen
//All rights reserved.
//
// CIMPL Matrix Performance Library
//
//Redistribution and use in source and binary
//forms, with or without modification, are
//permitted provided that the following
//conditions are met:
//
//    * No commercial use is allowed. 
//    This software can only be used
//    for non-commercial purposes. This 
//    distribution is mainly intended for
//    academic research and teaching.
//    * Redistributions of source code must
//    retain the above copyright notice, this
//    list of conditions and the following
//    disclaimer.
//    * Redistributions of binary form must
//    mention the above copyright notice, this
//    list of conditions and the following
//    disclaimer in a clearly visible part 
//    in associated product manual, 
//    readme, and web site of the redistributed 
//    software.
//    * Redistributions in binary form must
//    reproduce the above copyright notice,
//    this list of conditions and the
//    following disclaimer in the
//    documentation and/or other materials
//    provided with the distribution.
//    * The name of Baris Sumengen may not be
//    used to endorse or promote products
//    derived from this software without
//    specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
//HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
//EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
//NOT LIMITED TO, THE IMPLIED WARRANTIES OF
//MERCHANTABILITY AND FITNESS FOR A PARTICULAR
//PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//CONTRIBUTORS BE LIABLE FOR ANY
//DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
//EXEMPLARY, OR CONSEQUENTIAL DAMAGES
//(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
//OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
//DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
//HOWEVER CAUSED AND ON ANY THEORY OF
//LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
//OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
//OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.



#pragma once
#ifndef LAPACK_H
#define LAPACK_H


#include "cimpl.h"
using namespace CIMPL;

#include <math.h>
#include <string>

#include <limits>
using std::numeric_limits;



/// \brief Lapack Toolbox
namespace Lapack
{

//=========================================================
// Linear equations solver
//=========================================================
	
	// Gesv
	 Matrix<float> Gesv(Matrix<float>& A, Matrix<float>& B);
	 Matrix<double> Gesv(Matrix<double>& A, Matrix<double>& B);
	 Matrix<ComplexFloat> Gesv(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& B);
	 Matrix<ComplexDouble> Gesv(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& B);

	//Gesvx
	
	
	//Posv
	 Matrix<float> Posv(Matrix<float>& A, Matrix<float>& B);
	 Matrix<double> Posv(Matrix<double>& A, Matrix<double>& B);
	 Matrix<ComplexFloat> Posv(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& B);
	 Matrix<ComplexDouble> Posv(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& B);

	//Posvx

	//Sysv
	 Matrix<float> Sysv(Matrix<float>& A, Matrix<float>& B);
	 Matrix<double> Sysv(Matrix<double>& A, Matrix<double>& B);
	 Matrix<ComplexFloat> Sysv(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& B);
	 Matrix<ComplexDouble> Sysv(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& B);

	//Sysvx


	//Hesv
	 Matrix<ComplexFloat> Hesv(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& B);
	 Matrix<ComplexDouble> Hesv(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& B);

	//Hesvx
	

//=========================================================
// Linear Least Squares problems
//=========================================================


	// Gels
	 Matrix<float> Gels(Matrix<float>& A, Matrix<float>& B);
	 Matrix<double> Gels(Matrix<double>& A, Matrix<double>& B);
	 Matrix<ComplexFloat> Gels(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& B);
	 Matrix<ComplexDouble> Gels(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& B);
	
	// Gelsy
	 Matrix<float> Gelsy(Matrix<float>& A, Matrix<float>& B);
	 Matrix<double> Gelsy(Matrix<double>& A, Matrix<double>& B);
	 Matrix<ComplexFloat> Gelsy(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& B);
	 Matrix<ComplexDouble> Gelsy(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& B);
	
	// Gelss
	 Matrix<float> Gelss(Matrix<float>& A, Matrix<float>& B);
	 Matrix<double> Gelss(Matrix<double>& A, Matrix<double>& B);
	 Matrix<ComplexFloat> Gelss(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& B);
	 Matrix<ComplexDouble> Gelss(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& B);
	
	// Gelsd
	 Matrix<float> Gelsd(Matrix<float>& A, Matrix<float>& B);
	 Matrix<double> Gelsd(Matrix<double>& A, Matrix<double>& B);
	 Matrix<ComplexFloat> Gelsd(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& B);
	 Matrix<ComplexDouble> Gelsd(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& B);



//=========================================================
// Generalized Linear Least Squares problems
//=========================================================


	// Gglse
	 Vector<float> Gglse(Matrix<float>& A, Matrix<float>& B, Vector<float>& c, Vector<float>& d);
	 Vector<double> Gglse(Matrix<double>& A, Matrix<double>& B, Vector<double>& c, Vector<double>& d);
	 Vector<ComplexFloat> Gglse(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& B, Vector<ComplexFloat>& c, Vector<ComplexFloat>& d);
	 Vector<ComplexDouble> Gglse(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& B, Vector<ComplexDouble>& c, Vector<ComplexDouble>& d);


	// Ggglm
	 void Ggglm(Matrix<float>& A, Matrix<float>& B, Vector<float>& d, Vector<float>& x, Vector<float>& y);
	 void Ggglm(Matrix<double>& A, Matrix<double>& B, Vector<double>& d, Vector<double>& x, Vector<double>& y);
	 void Ggglm(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& B, Vector<ComplexFloat>& d, Vector<ComplexFloat>& x, Vector<ComplexFloat>& y);
	 void Ggglm(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& B, Vector<ComplexDouble>& d, Vector<ComplexDouble>& x, Vector<ComplexDouble>& y);



//=========================================================
// Symmetric eigenproblem
//=========================================================



	// Syevd
	 Vector<float> Syevd(Matrix<float>& A);
	 Vector<float> Syevd(Matrix<float>& A, Matrix<float>& EV);
	 Vector<double> Syevd(Matrix<double>& A);
	 Vector<double> Syevd(Matrix<double>& A, Matrix<double>& EV);
	// Heevd
	 Vector<float> Heevd(Matrix<ComplexFloat>& A);
	 Vector<float> Heevd(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& EV);
	 Vector<double> Heevd(Matrix<ComplexDouble>& A);
	 Vector<double> Heevd(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& EV);



	// Syevr
	 Vector<float> Syevr(Matrix<float>& A);
	 Vector<float> Syevr(Matrix<float>& A, int il, int iu);
	 Vector<float> Syevr(Matrix<float>& A, Matrix<float>& EV);
	 Vector<float> Syevr(Matrix<float>& A, Matrix<float>& EV, int il, int iu);
	 Vector<double> Syevr(Matrix<double>& A);
	 Vector<double> Syevr(Matrix<double>& A, int il, int iu);
	 Vector<double> Syevr(Matrix<double>& A, Matrix<double>& EV);
	 Vector<double> Syevr(Matrix<double>& A, Matrix<double>& EV, int il, int iu);

	// Heevr
	 Vector<float> Heevr(Matrix<ComplexFloat>& A);
	 Vector<float> Heevr(Matrix<ComplexFloat>& A, int il, int iu);
	 Vector<float> Heevr(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& EV);
	 Vector<float> Heevr(Matrix<ComplexFloat>& A, Matrix<ComplexFloat>& EV, int il, int iu);
	 Vector<double> Heevr(Matrix<ComplexDouble>& A);
	 Vector<double> Heevr(Matrix<ComplexDouble>& A, int il, int iu);
	 Vector<double> Heevr(Matrix<ComplexDouble>& A, Matrix<ComplexDouble>& EV);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -