📄 levelsetmethods.cpp
字号:
//Copyright (c) 2004-2005, Baris Sumengen
//All rights reserved.
//
// CIMPL Matrix Performance Library
//
//Redistribution and use in source and binary
//forms, with or without modification, are
//permitted provided that the following
//conditions are met:
//
// * No commercial use is allowed.
// This software can only be used
// for non-commercial purposes. This
// distribution is mainly intended for
// academic research and teaching.
// * Redistributions of source code must
// retain the above copyright notice, this
// list of conditions and the following
// disclaimer.
// * Redistributions of binary form must
// mention the above copyright notice, this
// list of conditions and the following
// disclaimer in a clearly visible part
// in associated product manual,
// readme, and web site of the redistributed
// software.
// * Redistributions in binary form must
// reproduce the above copyright notice,
// this list of conditions and the
// following disclaimer in the
// documentation and/or other materials
// provided with the distribution.
// * The name of Baris Sumengen may not be
// used to endorse or promote products
// derived from this software without
// specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
//HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
//EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
//NOT LIMITED TO, THE IMPLIED WARRANTIES OF
//MERCHANTABILITY AND FITNESS FOR A PARTICULAR
//PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//CONTRIBUTORS BE LIABLE FOR ANY
//DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
//EXEMPLARY, OR CONSEQUENTIAL DAMAGES
//(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
//OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
//DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
//HOWEVER CAUSED AND ON ANY THEORY OF
//LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
//OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
//OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
#include "./LevelSetMethods.h"
namespace LevelSetMethods
{
Matrix<int> ExtractCurve(Matrix<float> phi)
{
Matrix<int> curve(phi.Rows(), phi.Columns(), 0);
int endR = phi.Rows()-1;
int endC = phi.Columns()-1;
for(int i=4;i<=endR-4;i++)
{
for(int j=4;j<=endC-4;j++)
{
if(phi.ElemNC(i+1,j)*phi.ElemNC(i,j) <= 0)
{
curve.ElemNC(i+1,j) = 1;
curve.ElemNC(i,j) = 1;
}
if(phi.ElemNC(i-1,j)*phi.ElemNC(i,j) <= 0)
{
curve.ElemNC(i-1,j) = 1;
curve.ElemNC(i,j) = 1;
}
if(phi.ElemNC(i,j+1)*phi.ElemNC(i,j) <= 0)
{
curve.ElemNC(i,j+1) = 1;
curve.ElemNC(i,j) = 1;
}
if(phi.ElemNC(i,j-1)*phi.ElemNC(i,j) <= 0)
{
curve.ElemNC(i,j-1) = 1;
curve.ElemNC(i,j) = 1;
}
}
}
return curve;
}
Matrix<int> ExtractCurve(Matrix<double> phi)
{
Matrix<int> curve(phi.Rows(), phi.Columns(), 0);
int endR = phi.Rows()-1;
int endC = phi.Columns()-1;
for(int i=4;i<=endR-4;i++)
{
for(int j=4;j<=endC-4;j++)
{
if(phi.ElemNC(i+1,j)*phi.ElemNC(i,j) <= 0)
{
curve.ElemNC(i+1,j) = 1;
curve.ElemNC(i,j) = 1;
}
if(phi.ElemNC(i-1,j)*phi.ElemNC(i,j) <= 0)
{
curve.ElemNC(i-1,j) = 1;
curve.ElemNC(i,j) = 1;
}
if(phi.ElemNC(i,j+1)*phi.ElemNC(i,j) <= 0)
{
curve.ElemNC(i,j+1) = 1;
curve.ElemNC(i,j) = 1;
}
if(phi.ElemNC(i,j-1)*phi.ElemNC(i,j) <= 0)
{
curve.ElemNC(i,j-1) = 1;
curve.ElemNC(i,j) = 1;
}
}
}
return curve;
}
Matrix<float>& ExtendConst2D(Matrix<float>& phi, int size)
{
if(size < 1 || size >3)
{
cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
Utility::RunTimeError("Extension size should be between 1 and 3!");
}
int endR = phi.Rows()-1;
int endC = phi.Columns()-1;
// Extrapolate first layer
for(int i=3;i<=endR-3;i++)
{
phi.ElemNC(i,2) = phi.ElemNC(i,3);
phi.ElemNC(i,endC-2) = phi.ElemNC(i,endC-3);
}
for(int j=3;j<=endC-3;j++)
{
phi.ElemNC(2,j) = phi.ElemNC(3,j);
phi.ElemNC(endR-2,j) = phi.ElemNC(endR-3,j);
}
// May be useful for kappa
phi.ElemNC(2,2) = phi.ElemNC(3,3);
phi.ElemNC(2,endC-2) = phi.ElemNC(3,endC-3);
phi.ElemNC(endR-2,2) = phi.ElemNC(endR-3,3);
phi.ElemNC(endR-2,endC-2) = phi.ElemNC(endR-3,endC-3);
// Extend second layer
if(size>=2)
{
for(int i=2;i<=endR-2;i++)
{
phi.ElemNC(i,1) = phi.ElemNC(i,2);
phi.ElemNC(i,endC-1) = phi.ElemNC(i,endC-2);
}
for(int j=2;j<=endC-2;j++)
{
phi.ElemNC(1,j) = phi.ElemNC(2,j);
phi.ElemNC(endR-1,j) = phi.ElemNC(endR-2,j);
}
}
// Extend third layer
if(size>=3)
{
for(int i=1;i<=endR-1;i++)
{
phi.ElemNC(i,0) = phi.ElemNC(i,1);
phi.ElemNC(i,endC-0) = phi.ElemNC(i,endC-1);
}
for(int j=1;j<=endC-1;j++)
{
phi.ElemNC(0,j) = phi.ElemNC(1,j);
phi.ElemNC(endR-0,j) = phi.ElemNC(endR-1,j);
}
}
return phi;
}
Matrix<float>& Extend2D(Matrix<float>& phi, int size)
{
if(size < 1 || size >3)
{
cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
Utility::RunTimeError("Extension size should be between 1 and 3!");
}
int endR = phi.Rows()-1;
int endC = phi.Columns()-1;
// Extrapolate first layer
for(int i=3;i<=endR-3;i++)
{
phi.ElemNC(i,2) = 2*phi.ElemNC(i,3) - phi.ElemNC(i,4);
phi.ElemNC(i,endC-2) = 2*phi.ElemNC(i,endC-3) - phi.ElemNC(i,endC-4);
}
for(int j=3;j<=endC-3;j++)
{
phi.ElemNC(2,j) = 2*phi.ElemNC(3,j) - phi.ElemNC(4,j);
phi.ElemNC(endR-2,j) = 2*phi.ElemNC(endR-3,j) - phi.ElemNC(endR-4,j);
}
// May be useful for kappa
phi.ElemNC(2,2) = 2*phi.ElemNC(3,3) - phi.ElemNC(4,4);
phi.ElemNC(2,endC-2) = 2*phi.ElemNC(3,endC-3) - phi.ElemNC(4,endC-4);
phi.ElemNC(endR-2,2) = 2*phi.ElemNC(endR-3,3) - phi.ElemNC(endR-4,4);
phi.ElemNC(endR-2,endC-2) = 2*phi.ElemNC(endR-3,endC-3) - phi.ElemNC(endR-4,endC-4);
// Extrapolate second layer
if(size>=2)
{
for(int i=2;i<=endR-2;i++)
{
phi.ElemNC(i,1) = 2*phi.ElemNC(i,2) - phi.ElemNC(i,3);
phi.ElemNC(i,endC-1) = 2*phi.ElemNC(i,endC-2) - phi.ElemNC(i,endC-3);
}
for(int j=2;j<=endC-2;j++)
{
phi.ElemNC(1,j) = 2*phi.ElemNC(2,j) - phi.ElemNC(3,j);
phi.ElemNC(endR-1,j) = 2*phi.ElemNC(endR-2,j) - phi.ElemNC(endR-3,j);
}
}
// Extrapolate third layer
if(size>=3)
{
for(int i=1;i<=endR-1;i++)
{
phi.ElemNC(i,0) = 2*phi.ElemNC(i,1) - phi.ElemNC(i,2);
phi.ElemNC(i,endC-0) = 2*phi.ElemNC(i,endC-1) - phi.ElemNC(i,endC-2);
}
for(int j=1;j<=endC-1;j++)
{
phi.ElemNC(0,j) = 2*phi.ElemNC(1,j) - phi.ElemNC(2,j);
phi.ElemNC(endR-0,j) = 2*phi.ElemNC(endR-1,j) - phi.ElemNC(endR-2,j);
}
}
return phi;
}
Matrix<double>& Extend2D(Matrix<double>& phi, int size)
{
if(size < 1 || size >3)
{
cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
Utility::RunTimeError("Extension size should be between 1 and 3!");
}
int endR = phi.Rows()-1;
int endC = phi.Columns()-1;
// Extrapolate first layer
for(int i=3;i<=endR-3;i++)
{
phi.ElemNC(i,2) = 2*phi.ElemNC(i,3) - phi.ElemNC(i,4);
phi.ElemNC(i,endC-2) = 2*phi.ElemNC(i,endC-3) - phi.ElemNC(i,endC-4);
}
for(int j=3;j<=endC-3;j++)
{
phi.ElemNC(2,j) = 2*phi.ElemNC(3,j) - phi.ElemNC(4,j);
phi.ElemNC(endR-2,j) = 2*phi.ElemNC(endR-3,j) - phi.ElemNC(endR-4,j);
}
// May be useful for kappa
phi.ElemNC(2,2) = 2*phi.ElemNC(3,3) - phi.ElemNC(4,4);
phi.ElemNC(2,endC-2) = 2*phi.ElemNC(3,endC-3) - phi.ElemNC(4,endC-4);
phi.ElemNC(endR-2,2) = 2*phi.ElemNC(endR-3,3) - phi.ElemNC(endR-4,4);
phi.ElemNC(endR-2,endC-2) = 2*phi.ElemNC(endR-3,endC-3) - phi.ElemNC(endR-4,endC-4);
// Extrapolate second layer
if(size>=2)
{
for(int i=2;i<=endR-2;i++)
{
phi.ElemNC(i,1) = 2*phi.ElemNC(i,2) - phi.ElemNC(i,3);
phi.ElemNC(i,endC-1) = 2*phi.ElemNC(i,endC-2) - phi.ElemNC(i,endC-3);
}
for(int j=2;j<=endC-2;j++)
{
phi.ElemNC(1,j) = 2*phi.ElemNC(2,j) - phi.ElemNC(3,j);
phi.ElemNC(endR-1,j) = 2*phi.ElemNC(endR-2,j) - phi.ElemNC(endR-3,j);
}
}
// Extrapolate third layer
if(size>=3)
{
for(int i=1;i<=endR-1;i++)
{
phi.ElemNC(i,0) = 2*phi.ElemNC(i,1) - phi.ElemNC(i,2);
phi.ElemNC(i,endC-0) = 2*phi.ElemNC(i,endC-1) - phi.ElemNC(i,endC-2);
}
for(int j=1;j<=endC-1;j++)
{
phi.ElemNC(0,j) = 2*phi.ElemNC(1,j) - phi.ElemNC(2,j);
phi.ElemNC(endR-0,j) = 2*phi.ElemNC(endR-1,j) - phi.ElemNC(endR-2,j);
}
}
return phi;
}
void Evolve2DNormalENO1(Matrix<float>& phi, float dx, float dy, Matrix<float>& Vn, Matrix<float>& delta, Matrix<float>& H1Abs, Matrix<float>& H2Abs)
{
int endR = phi.Rows()-1;
int endC = phi.Columns()-1;
for(int j=3;j<=endC-3;j++)
{
for(int i=3;i<=endR-3;i++)
{
float phi_x_m = DerENO1Minus(phi.ElemNC(i,j-1), phi.ElemNC(i,j), dx);
float phi_x_p = DerENO1Plus(phi.ElemNC(i,j), phi.ElemNC(i,j+1), dx);
float phi_x = SelectDerNormal(phi_x_m, phi_x_p, Vn.ElemNC(i,j));
float phi_y_m = DerENO1Minus(phi.ElemNC(i-1,j), phi.ElemNC(i,j), dy);
float phi_y_p = DerENO1Plus(phi.ElemNC(i,j), phi.ElemNC(i+1,j), dy);
float phi_y = SelectDerNormal(phi_y_m, phi_y_p, Vn.ElemNC(i,j));
float absGradPhi = sqrt(phi_x*phi_x+phi_y*phi_y);
H1Abs.ElemNC(i,j) = (float)fabs( Vn.ElemNC(i,j)*phi_x*phi_x/(absGradPhi+(absGradPhi>1e-19?0:1)) );
H2Abs.ElemNC(i,j) = (float)fabs( Vn.ElemNC(i,j)*phi_y*phi_y/(absGradPhi+(absGradPhi>1e-19?0:1)) );
delta.ElemNC(i,j) = Vn.ElemNC(i,j)*absGradPhi;
}
}
}
void Evolve2DNormalENO2(Matrix<float>& phi, float dx, float dy, Matrix<float>& Vn, Matrix<float>& delta, Matrix<float>& H1Abs, Matrix<float>& H2Abs)
{
int endR = phi.Rows()-1;
int endC = phi.Columns()-1;
for(int j=3;j<=endC-3;j++)
{
for(int i=3;i<=endR-3;i++)
{
float phi_x_m = DerENO2Minus(phi.ElemNC(i,j-2), phi.ElemNC(i,j-1), phi.ElemNC(i,j), phi.ElemNC(i,j+1), dx);
float phi_x_p = DerENO2Plus(phi.ElemNC(i,j-1), phi.ElemNC(i,j), phi.ElemNC(i,j+1), phi.ElemNC(i,j+2), dx);
float phi_x = SelectDerNormal(phi_x_m, phi_x_p, Vn.ElemNC(i,j));
float phi_y_m = DerENO2Minus(phi.ElemNC(i-2,j), phi.ElemNC(i-1,j), phi.ElemNC(i,j), phi.ElemNC(i+1,j), dy);
float phi_y_p = DerENO2Plus(phi.ElemNC(i-1,j), phi.ElemNC(i,j), phi.ElemNC(i+1,j), phi.ElemNC(i+2,j), dy);
float phi_y = SelectDerNormal(phi_y_m, phi_y_p, Vn.ElemNC(i,j));
float absGradPhi = sqrt(phi_x*phi_x+phi_y*phi_y);
H1Abs.ElemNC(i,j) = (float)fabs( Vn.ElemNC(i,j)*phi_x*phi_x/(absGradPhi+(absGradPhi>1e-19?0:1)) );
H2Abs.ElemNC(i,j) = (float)fabs( Vn.ElemNC(i,j)*phi_y*phi_y/(absGradPhi+(absGradPhi>1e-19?0:1)) );
delta.ElemNC(i,j) = Vn.ElemNC(i,j)*absGradPhi;
}
}
}
void Evolve2DNormalENO3(Matrix<float>& phi, float dx, float dy, Matrix<float>& Vn, Matrix<float>& delta, Matrix<float>& H1Abs, Matrix<float>& H2Abs)
{
int endR = phi.Rows()-1;
int endC = phi.Columns()-1;
for(int j=3;j<=endC-3;j++)
{
for(int i=3;i<=endR-3;i++)
{
float phi_x_m = DerENO3Minus(phi.ElemNC(i,j-3), phi.ElemNC(i,j-2), phi.ElemNC(i,j-1), phi.ElemNC(i,j), phi.ElemNC(i,j+1), phi.ElemNC(i,j+2), dx);
float phi_x_p = DerENO3Plus(phi.ElemNC(i,j-2), phi.ElemNC(i,j-1), phi.ElemNC(i,j), phi.ElemNC(i,j+1), phi.ElemNC(i,j+2), phi.ElemNC(i,j+3), dx);
float phi_x = SelectDerNormal(phi_x_m, phi_x_p, Vn.ElemNC(i,j));
float phi_y_m = DerENO3Minus(phi.ElemNC(i-3,j), phi.ElemNC(i-2,j), phi.ElemNC(i-1,j), phi.ElemNC(i,j), phi.ElemNC(i+1,j), phi.ElemNC(i+2,j), dy);
float phi_y_p = DerENO3Plus(phi.ElemNC(i-2,j), phi.ElemNC(i-1,j), phi.ElemNC(i,j), phi.ElemNC(i+1,j), phi.ElemNC(i+2,j), phi.ElemNC(i+3,j), dy);
float phi_y = SelectDerNormal(phi_y_m, phi_y_p, Vn.ElemNC(i,j));
float absGradPhi = sqrt(phi_x*phi_x+phi_y*phi_y);
H1Abs.ElemNC(i,j) = (float)fabs( Vn.ElemNC(i,j)*phi_x*phi_x/(absGradPhi+(absGradPhi>1e-19?0:1)) );
H2Abs.ElemNC(i,j) = (float)fabs( Vn.ElemNC(i,j)*phi_y*phi_y/(absGradPhi+(absGradPhi>1e-19?0:1)) );
delta.ElemNC(i,j) = Vn.ElemNC(i,j)*absGradPhi;
}
}
}
void Evolve2DNormalWENO(Matrix<float>& phi, float dx, float dy, Matrix<float>& Vn, Matrix<float>& delta, Matrix<float>& H1Abs, Matrix<float>& H2Abs)
{
int endR = phi.Rows()-1;
int endC = phi.Columns()-1;
for(int j=3;j<=endC-3;j++)
{
for(int i=3;i<=endR-3;i++)
{
float phi_x_m = DerWENOMinus(phi.ElemNC(i,j-3), phi.ElemNC(i,j-2), phi.ElemNC(i,j-1), phi.ElemNC(i,j), phi.ElemNC(i,j+1), phi.ElemNC(i,j+2), dx);
float phi_x_p = DerWENOPlus(phi.ElemNC(i,j-2), phi.ElemNC(i,j-1), phi.ElemNC(i,j), phi.ElemNC(i,j+1), phi.ElemNC(i,j+2), phi.ElemNC(i,j+3), dx);
float phi_x = SelectDerNormal(phi_x_m, phi_x_p, Vn.ElemNC(i,j));
float phi_y_m = DerWENOMinus(phi.ElemNC(i-3,j), phi.ElemNC(i-2,j), phi.ElemNC(i-1,j), phi.ElemNC(i,j), phi.ElemNC(i+1,j), phi.ElemNC(i+2,j), dy);
float phi_y_p = DerWENOPlus(phi.ElemNC(i-2,j), phi.ElemNC(i-1,j), phi.ElemNC(i,j), phi.ElemNC(i+1,j), phi.ElemNC(i+2,j), phi.ElemNC(i+3,j), dy);
float phi_y = SelectDerNormal(phi_y_m, phi_y_p, Vn.ElemNC(i,j));
float absGradPhi = sqrt(phi_x*phi_x+phi_y*phi_y);
H1Abs.ElemNC(i,j) = (float)fabs( Vn.ElemNC(i,j)*phi_x*phi_x/(absGradPhi+(absGradPhi>1e-19?0:1)) );
H2Abs.ElemNC(i,j) = (float)fabs( Vn.ElemNC(i,j)*phi_y*phi_y/(absGradPhi+(absGradPhi>1e-19?0:1)) );
delta.ElemNC(i,j) = Vn.ElemNC(i,j)*absGradPhi;
}
}
}
void Evolve2DNormalENO1(Matrix<double>& phi, double dx, double dy, Matrix<double>& Vn, Matrix<double>& delta, Matrix<double>& H1Abs, Matrix<double>& H2Abs)
{
int endR = phi.Rows()-1;
int endC = phi.Columns()-1;
for(int j=3;j<=endC-3;j++)
{
for(int i=3;i<=endR-3;i++)
{
double phi_x_m = DerENO1Minus(phi.ElemNC(i,j-1), phi.ElemNC(i,j), dx);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -