⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix.inl

📁 图像分割算法
💻 INL
📖 第 1 页 / 共 3 页
字号:
template< class T >
Matrix<T>& Matrix<T>::Add(Matrix<T>& m)
{
	if(!Matrix<T>::IsCompatible(*this, m))
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Matrix sizes are not compatible!");
	}

	for(int i=0;i<this->length;i++)
	{
		this->data[i] += m.data[i];
	}
	
	return *this;
}

template< class T >
Matrix<T>& Matrix<T>::Subtract(Matrix<T>& m)
{
	if(!Matrix<T>::IsCompatible(*this, m))
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Matrix sizes are not compatible!");
	}

	for(int i=0;i<this->length;i++)
	{
		this->data[i] -= m.data[i];
	}
	
	return *this;
}

template< class T >
Matrix<T>& Matrix<T>::Multiply(Matrix<T>& m)
{
	if(!Matrix<T>::IsCompatible(*this, m))
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Matrix sizes are not compatible!");
	}

	for(int i=0;i<this->length;i++)
	{
		this->data[i] *= m.data[i];
	}
	
	return *this;
}

template< class T >
Matrix<T>& Matrix<T>::Divide(Matrix<T>& m)
{
	if(!Matrix<T>::IsCompatible(*this, m))
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Matrix sizes are not compatible!");
	}

	for(int i=0;i<this->length;i++)
	{
		if(m.data[i] != 0)
		{
			this->data[i] /= m.data[i];
		}
		else
		{
			cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
			Utility::RunTimeError("Divide by zero in matrix division!");
		}
	}
	
	return *this;
}

// /////////////
// Arithmetic operation between "this" matrix and a value
// /////////////

template< class T >
Matrix<T>& Matrix<T>::Add(T v)
{
	for(int i=0;i<this->length;i++)
	{
		this->data[i] += v;
	}
	return *this;
}

template< class T >
Matrix<T>& Matrix<T>::Subtract(T v)
{
	for(int i=0;i<this->length;i++)
	{
		this->data[i] -= v;
	}
	return *this;
}

template< class T >
Matrix<T>& Matrix<T>::Multiply(T v)
{
	for(int i=0;i<this->length;i++)
	{
		this->data[i] *= v;
	}
	return *this;
}

template< class T >
Matrix<T>& Matrix<T>::Divide(T v)
{
	if(v == 0)
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Divide by zero in matrix by value division!");
	}
	
	for(int i=0;i<this->length;i++)
	{
		this->data[i] /= v;
	}
	return *this;
}






// /////////
// OPERATORS
// /////////


template< class T >
Matrix<T>& Matrix<T>::operator= (Matrix<T>& m)
{
	if(&m != this)
	{
		ndims = m.ndims;
		length = m.length;
		xDim = m.xDim;
		yDim = m.yDim;
		data = m.data;
		columns = m.columns;
		
		delete clean;
		clean = new (std::nothrow) Cleaner<T>(data, columns);
		Utility::CheckPointer(clean);
	}	
	
	return *this;
}


//template< class T >
//Matrix<T>& Matrix<T>::operator= (Array<T>& m)
//{
//	ndims = 2;
//	xDim = 0;
//	yDim = 0;
//	data = 0;
//	columns = 0;
//
//	if(m.ndims == 2){
//		length = m.length;
//		data = m.data;
//		xDim = m.xDim;
//		yDim = m.yDim;
//
//		columns = new (std::nothrow) Vector<T>[Columns()];
//		Utility::CheckPointer(columns);
//		for(int i=0; i<Columns(); i++)
//		{
//			columns[i].Set(&(data[i*Rows()]), Rows());
//		}
//
//		delete clean;
//		clean = new (std::nothrow) Cleaner<T>(data, columns);
//		Utility::CheckPointer(clean);
//	}
//	else if(m.ndims > 0) // Convert to row matrux
//	{
//		length = m.length;
//		data = m.data;
//		xDim = length;
//		yDim = 1;
//		
//		columns = new (std::nothrow) Vector<T>[1];
//		Utility::CheckPointer(columns);
//		columns[0].Set(&(data[0]),length);
//
//		delete clean;
//		clean = new (std::nothrow) Cleaner<T>(data, columns);
//		Utility::CheckPointer(clean);
//		
//		Utility::Warning("Array (not of dimension 2) is converted to row Matrix. dimensionality information is lost.");
//	}
//	
//
//	return *this;
//}

template< class T >
Matrix<T>& Matrix<T>::operator= (Vector<T>& m)
{
	*this = (Matrix<T>)m;
	return *this;
}


template< class T >
Matrix<T>& Matrix<T>::operator= (SubMatrix<T>& m)
{
	if(xDim != m.xDim || yDim != m.yDim)
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("All Matrix and SubMatrix dimensions should agree!");
	}
	for(int i=0;i<m.xDim;i++)
	{
		for(int j=0;j<m.yDim;j++)
		{
			columns[i].data[j] = m[i][j];
		}
	}
	
	return *this;
}



template< class T >
Matrix<T>& Matrix<T>::operator= (string str)
{
	Matrix<T> temp(str);
	*this = temp;
	return *this;
}


// ////
//Unary operators
// ////

/// \brief Unary +. Does not have any effect. Returns the same matrix. 
template< class T >
inline Matrix<T> Matrix<T>::operator+ ()
{
	return *this;
}


/// \brief Unary -
template< class T >
inline Matrix<T> Matrix<T>::operator- ()
{
	Matrix<T> temp(yDim, xDim);
	for(int i=0;i<length;i++)
	{
		temp.data[i] = - data[i];
	}
	return temp;
}



template< class T >
inline Matrix<int> Matrix<T>::operator! ()
{
	Matrix<int> temp(yDim, xDim);
	for(int i=0;i<length;i++)
	{
		if(data[i] == 0)
		{
			temp.Data()[i] = 1;
		}
		else
		{
			temp.Data()[i] = 0;
		}
	}
	return temp;
}


/// \brief Transpose ~
template< class T >
inline Matrix<T> Matrix<T>::operator~ ()
{
	return Matrix<T>::Transpose(*this);
}



//---------------

/// \brief Matrix element access (sequential: column scan). Bounds are checked.
template< class T >
inline T& Matrix<T>::Elem(const int i)
{
	if(i<0 || i>=length)
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Index outside bounds!");
	}
	return data[i];
}

/// \brief Matrix element access (sequential: column scan). Bounds are not checked.
template< class T >
inline T& Matrix<T>::ElemNC(const int i)
{
	return data[i];
}


/// \brief Matrix element access (row,col). Bounds are checked.
template< class T >
inline T& Matrix<T>::Elem(const int j, const int i)
{
	if(i<0 || i>=xDim || j<0 || j>=yDim)
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Index outside bounds!");
	}

	return columns[i].data[j];

}


/// \brief Matrix element access (row,col). Bounds are not checked.
template< class T >
inline T& Matrix<T>::ElemNC(const int j, const int i)
{
	return columns[i].data[j];

}


/// \brief Matrix element access using coordinates (x,y). Bounds are checked.
template< class T >
inline T& Matrix<T>::Coor(const int i, const int j)
{
	if(i<0 || i>=dims[0] || j<0 || j>=dims[1])
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Index outside bounds!");
	}

	return columns[i].data[j];

}


/// \brief Matrix element access using coordinates (x,y). Bounds are not checked.
template< class T >
inline T& Matrix<T>::CoorNC(const int i, const int j)
{
	return columns[i].data[j];

}


//---------------


/// \brief Matrix element access (sequential: column scan). Bounds are checked (See ElemNC() for element access with no bounds check).
template< class T >
inline T& Matrix<T>::operator() (const int i)
{
	if(i<0 || i>=length)
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Index outside bounds!");
	}
	return data[i];
}

/// \brief Matrix element access (row,col). Bounds are checked (See ElemNC() for element access with no bounds check).
template< class T >
inline T& Matrix<T>::operator() (const int j, const int i)
{
#ifdef CIMPL_BOUNDS_CHECK
	if(i<0 || i>=xDim || j<0 || j>=yDim)
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Index outside bounds!");
	}
#endif

	return columns[i].data[j];

}


/// \brief Returns a pointer to the beginning of a column.
template< class T >
inline Vector<T>& Matrix<T>::operator[] (const int i)
{
	return columns[i];
}





template< class T >
inline SubMatrix<T> Matrix<T>::operator() (const int row1, const int row2, const int col1, const int col2)
{
	if(row1<0 || row1>=YDim() || row2<0 || row2>=YDim())
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Index outside bounds!");
	}
	if(row1 > row2)
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Second slice parameter cannot be less than the first parameter!");
	}


	if(col1<0 || col1>=XDim() || col2<0 || col2>=XDim())
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Index outside bounds!");
	}
	if(col1 > col2)
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Second slice parameter cannot be less than the first parameter!");
	}

	
	SubMatrix<T> temp;
	temp.xDim = col2-col1+1;
	temp.yDim = row2-row1+1;
	temp.columns = new (std::nothrow) Vector<T>[temp.xDim];
	Utility::CheckPointer(temp.columns);
	temp.clean = new (std::nothrow) Cleaner<T>(temp.columns);
	Utility::CheckPointer(temp.clean);

	for(int j=col1; j<=col2; j++)
	{
		temp.columns[j-col1].Set(&(columns[j].data[row1]),  row2-row1+1);
	}

	return temp;
}


template< class T >
SubMatrix<T> Matrix<T>::operator() (string str1, string str2)
{
	int row1, row2, col1, col2;
	vector<string> bounds1 = Utility::Split(str1, ":");
	vector<string> bounds2 = Utility::Split(str2, ":");
	
	if(str1 == ":")
	{
		row1 = 0;
		row2 = yDim-1;
	}
	else if(bounds1.size() == 2)
	{
		row1 = Utility::ToInt(bounds1[0]);
		row2 = Utility::ToInt(bounds1[1]);
	}
	else
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Incorrect slice argument. String cannot be parsed!");
	}

	if(str2 == ":")
	{
		col1 = 0;
		col2 = xDim-1;
	}
	else if(bounds2.size() == 2)
	{
		col1 = Utility::ToInt(bounds2[0]);
		col2 = Utility::ToInt(bounds2[1]);
	}
	else
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("Incorrect slice argument. String cannot be parsed!");
	}
	
	return this->operator()(row1, row2, col1, col2);

}


template< class T >
Vector<T> Matrix<T>::operator() (string str)
{
	Vector<T> temp = (Vector<T>)*this;
	return temp(str);
}

// ////
// Arithmetic operators
// ////

template< class T >
Matrix<T>& Matrix<T>::operator+= (Matrix<T>& m)
{
	return this->Add(m);
}

template< class T >
Matrix<T>& Matrix<T>::operator-= (Matrix<T>& m)
{
	return this->Subtract(m);
}

template< class T >
Matrix<T>& Matrix<T>::operator*= (Matrix<T>& m)
{
	return this->Multiply(m);
}

template< class T >
Matrix<T>& Matrix<T>::operator/= (Matrix<T>& m)
{
	return this->Divide(m);
}


template< class T >
Matrix<T>& Matrix<T>::operator+= (T v)
{
	return this->Add(v);
}

template< class T >
Matrix<T>& Matrix<T>::operator-= (T v)
{
	return this->Subtract(v);
}

template< class T >
Matrix<T>& Matrix<T>::operator*= (T v)
{
	return this->Multiply(v);
}

template< class T >
Matrix<T>& Matrix<T>::operator/= (T v)
{
	return this->Divide(v);
}


// TYPE CONVERSIONS

//template< class T >
//Matrix<T>::Matrix(Array<T> &m) 
//{
//	ndims = 2;
//	xDim = 0;
//	yDim = 0;
//	data = 0;
//	columns = 0;
//
//	if(m.ndims == 2){
//		length = m.length;
//		data = m.data;
//		xDim = m.XDim();
//		yDim = m.YDim();
//		
//		columns = new (std::nothrow) Vector<T>[Columns()];
//		Utility::CheckPointer(columns);
//		for(int i=0; i<Columns(); i++)
//		{
//			columns[i].Set(&(data[i*Rows()]), Rows());
//		}
//		clean = new (std::nothrow) Cleaner<T>(data, columns);
//		Utility::CheckPointer(clean);
//
//	}
//	else if(m.ndims > 0)
//	{
//		length = m.length;
//		data = m.data;
//		xDim = 1;
//		yDim = length;
//		
//		columns = new (std::nothrow) Vector<T>[1];
//		Utility::CheckPointer(columns);
//		columns[0].Set(&(data[0]),length);
//		clean = new (std::nothrow) Cleaner<T>(data, columns);
//		Utility::CheckPointer(clean);
//		
//		if(ndims != 1)
//		{
//			Utility::Warning("Array (which was not of dimension 2) is converted to a Nx1 (column) Matrix. Dimensionality information is lost.");
//		}
//	}
//
//}


template< class T >
Matrix<T>::Matrix(Vector<T> &v) 
{
	ndims = 2;

	length = v.length;
	data = v.data;
	xDim = 1;
	yDim = length;
	
	columns = new (std::nothrow) Vector<T>[1];
	Utility::CheckPointer(columns);
	columns[0].Set(&(data[0]),length);
	clean = new (std::nothrow) Cleaner<T>(data, columns);
	Utility::CheckPointer(clean);
	
}


template< class T >
Matrix<T>::Matrix(SubMatrix<T> &m) 
{
	if(m.yDim < 1 || m.xDim < 1)
	{
		cerr << "Line: " << __LINE__ << " File: " << __FILE__ << endl;
		Utility::RunTimeError("All Matrix dimensions should be larger than 0!");
	}

	ndims = 2;
	length = m.yDim*m.xDim;
	xDim = m.xDim;
	yDim = m.yDim;
	data = new (std::nothrow) T[length];
	Utility::CheckPointer(data);

	columns = new (std::nothrow) Vector<T>[xDim];
	Utility::CheckPointer(columns);
	for(int i=0; i<xDim; i++)
	{
		columns[i].Set(&(data[i*yDim]), yDim);
	}
	
	clean = new (std::nothrow) Cleaner<T>(data, columns);
	Utility::CheckPointer(clean);

	for(int i=0;i<m.xDim;i++)
	{
		for(int j=0;j<m.yDim;j++)
		{
			columns[i].data[j] = m[i][j];
		}
	}

}










⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -