📄 auto.c
字号:
//--------------------------------------------------
// Description : Measure position V
// Input Value : ucNoiseMarginV --> Noise margin for V
// Output Value : Measure status
//--------------------------------------------------
BYTE CAutoMeasurePositionV(BYTE ucNoiseMarginV)
{
WORD lbound, rbound;
rbound = stModeInfo.IHTotal; // Totol Clock Number
lbound = (LWORD)rbound * stModeInfo.IHSyncPulseCount / stModeInfo.IHCount; // Clock number in HSYNC pulse
CScalerSetBit(_VGIP_HV_DELAY_13, 0x0f, 0x50);
rbound = (rbound + _MEASURE_HDEALY) - 2;
rbound = rbound - 32;
lbound = (lbound + 20 + _MEASURE_HDEALY) < stModeInfo.IHStartPos ? (lbound + 20 + _MEASURE_HDEALY) : 0x0001;
lbound = (lbound > 32) ? (lbound - 32) : 0x0001;
ucNoiseMarginV &= 0xfc;
pData[0] = ((lbound >> 4) & 0x70) | (HIBYTE(rbound) & 0x0f);
pData[1] = (LOBYTE(lbound));
pData[2] = (LOBYTE(rbound));
pData[3] = (HIBYTE(stModeInfo.IVTotal - 1 + 3) & 0x0f);
pData[4] = (0x02);
pData[5] = (LOBYTE(stModeInfo.IVTotal - 1 + 3));
CScalerWrite(_H_BOUNDARY_H_70, 6, pData, _AUTOINC);
pData[0] = ucNoiseMarginV;
pData[1] = ucNoiseMarginV;
pData[2] = ucNoiseMarginV;
pData[3] = 0x00;
pData[4] = 0x00;
pData[5] = 0x00;
pData[6] = 0x00;
pData[7] = 0x01;
CScalerWrite(_RED_NOISE_MARGIN_76, 8, pData, _AUTOINC);
pData[0] = CAutoWaitFinish();
if(pData[0] != _ERROR_SUCCESS) return pData[0];
CScalerRead(_V_START_END_H_7E, 3, &pData[8], _AUTOINC);
usVStartPos = (((WORD)(pData[8] & 0xf0 ) << 4) | (WORD)pData[9]) + 3;
usVEndPos = (((WORD)(pData[8] & 0x0f ) << 8) | (WORD)pData[10]) + 3;
// Check all black
if(usVEndPos == 0x0000) return _ERROR_ABORT;
// Update auto-tracking window vertical range
pData[0] = (pData[8] & 0x7f);
pData[1] = pData[9];
pData[2] = pData[10];
CScalerWrite(_V_BOUNDARY_H_73, 3, pData, _AUTOINC);
return _ERROR_SUCCESS;
}
*/
//version 200D
//--------------------------------------------------
// Description : Measure position V
// Input Value : ucNoiseMarginV --> Noise margin for V
// Output Value : Measure status
//--------------------------------------------------
BYTE CAutoMeasurePositionV(BYTE ucNoiseMarginV)
{
WORD lbound, rbound;
rbound = stModeUserData.Clock; // Totol Clock Number
lbound = (LWORD)rbound * stModeInfo.IHSyncPulseCount / stModeInfo.IHCount; // Clock number in HSYNC pulse
CScalerSetBit(_VGIP_HV_DELAY_13, 0x0f, 0x50);
rbound = (rbound + _MEASURE_HDEALY) - 2;
rbound = rbound - 32;
lbound = (lbound + 20 + _MEASURE_HDEALY) < stModeInfo.IHStartPos ? (lbound + 20 + _MEASURE_HDEALY) : 0x0001;
lbound = (lbound > 32) ? (lbound - 32) : 0x0001;
ucNoiseMarginV &= 0xfc;
pData[0] = ((lbound >> 4) & 0x70) | (HIBYTE(rbound) & 0x0f);
pData[1] = (LOBYTE(lbound));
pData[2] = (LOBYTE(rbound));
pData[3] = (HIBYTE(stModeInfo.IVTotal - 1 + 3) & 0x0f);
pData[4] = (0x02);
pData[5] = (LOBYTE(stModeInfo.IVTotal - 1 + 3));
CScalerWrite(_H_BOUNDARY_H_70, 6, pData, _AUTOINC);
pData[0] = ucNoiseMarginV;
pData[1] = ucNoiseMarginV;
pData[2] = ucNoiseMarginV;
pData[3] = 0x00;
pData[4] = 0x00;
pData[5] = 0x00;
pData[6] = 0x00;
pData[7] = 0x01;
CScalerWrite(_RED_NOISE_MARGIN_76, 8, pData, _AUTOINC);
pData[0] = CAutoWaitFinish();
if(pData[0] != _ERROR_SUCCESS) return pData[0];
CScalerRead(_V_START_END_H_7E, 3, &pData[8], _AUTOINC);
usVStartPos = (((WORD)(pData[8] & 0xf0 ) << 4) | (WORD)pData[9]) + 3;
usVEndPos = (((WORD)(pData[8] & 0x0f ) << 8) | (WORD)pData[10]) + 3;
// Check all black
if(usVEndPos == 0x0000) return _ERROR_ABORT;
// Update auto-tracking window vertical range
pData[0] = (pData[8] & 0x7f);
pData[1] = pData[9];
pData[2] = pData[10];
CScalerWrite(_V_BOUNDARY_H_73, 3, pData, _AUTOINC);
return _ERROR_SUCCESS;
}
//--------------------------------------------------
// Description : Auto phase search function
// Input Value :
// Output Value :
//--------------------------------------------------
LWORD CAutoPhaseSearch(BYTE ucSelColor, BYTE ucSelStep, BYTE ucSelStepNum, BYTE ucSelStepStart, BYTE *ucPhaseResult)
{
LWORD maxsum;
BYTE count, best;
CScalerSetByte(_AUTO_ADJ_CTRL1_7D, 0x00);
CScalerSetBit(_AUTO_ADJ_CTRL0_7A, ~(_BIT1 | _BIT0), ucSelColor & 0x03);
// Issac : Because H/W auto phase search may cause underflow at start and stop,
// frame-sync watch-dog must be disabled.
//CAdjustDisableWatchDog(_WD_ALL);
CScalerSetByte(_HW_AUTO_PHASE_CTRL0_7B, (ucSelStep & 0x07) | (((ucSelStepNum - 1) & 0x1f) << 3));
CScalerSetByte(_HW_AUTO_PHASE_CTRL1_7C, 0x00 | (ucSelStepStart & 0x3f));
ucSelStep = (0x01 << ucSelStep);
ucSelColor = ucSelStepStart + (ucSelStepNum) * ucSelStep;
count = ucSelStepStart;
maxsum = 0;
best = 0;
// Issac : Using Wait_For_Event(EVENT_IVS) instead of Wait_For_IVS().
// Because H/W auto phase search may cause underflow at start and stop.
// Wait_For_Event() will not check underflow/overflow.
CScalerSetByte(_AUTO_ADJ_CTRL1_7D, 0x7b);
CAutoWaitForIVS(1);
do
{
if(CAutoWaitForIVS(((CScalerGetBit(_AUTO_ADJ_CTRL0_7A, _BIT1 | _BIT0) == 0x03) ? 3 : 1)) & (_EVENT_UNDERFLOW | _EVENT_OVERFLOW))
return 0xffffffff;
CScalerRead(_AUTO_PHASE_3_84, 3, pData, _AUTOINC);
pData[3] = 0;
if(((LWORD *)pData)[0] > maxsum)
{
maxsum = ((LWORD *)pData)[0];
best = count;
}
count += ucSelStep;
}
while(count < ucSelColor);
CScalerSetByte(_AUTO_ADJ_CTRL1_7D, 0x00);
CTimerWaitForEvent(_EVENT_IVS);
pData[0] = CAutoWaitFinish();
if(pData[0] != _ERROR_SUCCESS) return 0xffffffff;
*ucPhaseResult = best;
return maxsum;
}
//--------------------------------------------------
// Description : Get phase SOD information
// Input Value : ucColor --> Color we measure
// Output Value : Measure status
//--------------------------------------------------
BYTE CAutoReadPhaseInfo(BYTE ucColor)
{
CScalerSetBit(_AUTO_ADJ_CTRL0_7A, ~(_BIT1 | _BIT0), ucColor & 0x03);
CScalerSetByte(_AUTO_ADJ_CTRL1_7D, 0x3b);
pData[0] = CAutoWaitFinish();
if(_ERROR_SUCCESS != pData[0]) return pData[0];
CScalerRead(_AUTO_PHASE_3_84, 4, pData, _AUTOINC);
return _ERROR_SUCCESS;
}
/*
//--------------------------------------------------
// Description : Auto clock process
// Input Value : None
// Output Value : Measure status
//--------------------------------------------------
BYTE CAutoDoAutoClock(void)
{
BYTE result, phase;
WORD count, delta, stop;
LWORD maxval;
stModeUserData.Clock = stModeInfo.IHTotal;
stModeUserData.Clock &= 0xfffc;
CAdjustAdcClock(stModeUserData.Clock);
result = CAutoMeasurePositionV(_MIN_NOISE_MARGIN);
if(result != _ERROR_SUCCESS) return result;
delta = (stModeInfo.IHTotal - stModeInfo.IHWidth - (LWORD)stModeInfo.IHTotal * (LWORD)stModeInfo.IHSyncPulseCount / stModeInfo.IHCount) * 4 / 10;
stop = 0;
count = 10;
do
{
// Measure Horizontal Start/End
result = CAutoMeasurePositionH(_MIN_NOISE_MARGIN + 0x10);
if(result != _ERROR_SUCCESS) return result;
usHEndPos = usHEndPos + 1 - usHStartPos;
if(usHEndPos < stModeInfo.IHWidth)
{
if((stModeInfo.IHWidth - usHEndPos) >= (2 * delta))
{
stop = 1;
}
else
{
usHStartPos = (LWORD)(stModeInfo.IHWidth - usHEndPos) * (stModeUserData.Clock)
/ (LWORD)stModeInfo.IHWidth;
usHStartPos = (usHStartPos + 2) & 0xfffc;
//if((usHStartPos + (stModeInfo.IHTotal - stModeUserData.Clock)) > usDelta)
if((usHStartPos + stModeInfo.IHTotal) > (delta + stModeUserData.Clock))
{
stop = 1;
}
else
{
stModeUserData.Clock += usHStartPos;
}
}
}
else
{
if((usHEndPos - stModeInfo.IHWidth) >= (2 * delta))
{
stop = 1;
}
else
{
usHStartPos = (LWORD)(usHEndPos - stModeInfo.IHWidth) * (stModeUserData.Clock)
/ (LWORD)stModeInfo.IHWidth;
usHStartPos = (usHStartPos + 2) & 0xfffc;
//if((usHStartPos + (stModeUserData.Clock - stModeInfo.IHTotal)) > usDelta)
if((usHStartPos + stModeUserData.Clock) > (delta + stModeInfo.IHTotal))
{
stop = 1;
}
else
{
stModeUserData.Clock -= usHStartPos;
}
}
}
if(stop) break;
CAdjustAdcClock(stModeUserData.Clock);
if(usHStartPos == 0) break;
}
while(--count);
if((count == 0) || (stop == 1)) return _ERROR_ABORT;
// Prevent from 1/2-line moire and smear effect.
if((usHEndPos >= stModeInfo.IHWidth && (stModeUserData.Clock - stModeInfo.IHTotal) == 4)
|| (usHEndPos < stModeInfo.IHWidth && (stModeInfo.IHTotal - stModeUserData.Clock) == 4))
{
stModeUserData.Clock = stModeInfo.IHTotal;
CAdjustAdcClock(stModeUserData.Clock);
result = CAutoMeasurePositionH(_MIN_NOISE_MARGIN + 0x10);
if(result != _ERROR_SUCCESS) return result;
usHEndPos = usHEndPos + 1 - usHStartPos;
}
#if(_AUTO_CLOCK_PRECISION < 4)
// Save 4N clock
stop = stModeUserData.Clock;
stModeUserData.Clock += (stModeInfo.IHWidth >= usHEndPos) ? 4 : 2;
CAdjustAdcClock(stModeUserData.Clock);
// Set threshold for Clock Search
CScalerSetByte(_DIFF_THRESHOLD_79, 0x18);
count = stop;
maxval = 0;
delta = 6; // Initial value must be (N * AUTO_CLOCK_STEP)
do
{
result = CAutoMeasurePositionH(_MIN_NOISE_MARGIN + 0x10);
if(result != _ERROR_SUCCESS) return result;
usHEndPos = usHEndPos + 1 - usHStartPos;
if(usHEndPos > (stModeInfo.IHWidth + 2))
{
((LWORD *)pData)[0] = 0;
}
else
{
((LWORD *)pData)[0] = CAutoPhaseSearch(_COLOR_SELECT, _HWAUTO_STEP_8, HWAUTOSTEPNUM(8), HWAUTOSTEPSTART(0), &phase);
if (0xffffffffL == ((LWORD *)pData)[0]) return _ERROR_INPUT;
}
if(maxval < ((LWORD *)pData)[0])
{
maxval = ((LWORD *)pData)[0];
count = stModeUserData.Clock;
}
if(delta == 0x00)
{
// Check if default clock is the best when clock searching range is larger than default.
if(stModeUserData.Clock > stModeInfo.IHTotal)
{
stModeUserData.Clock = stModeInfo.IHTotal;
CAdjustAdcClock(stModeUserData.Clock);
continue;
}
break;
}
delta -= _AUTO_CLOCK_PRECISION;
stModeUserData.Clock -= _AUTO_CLOCK_PRECISION;
CAdjustAdcClock(stModeUserData.Clock);
}
while(_TRUE);
maxval = maxval / 3;
stModeUserData.Clock = (maxval > ((LWORD)stModeInfo.IHWidth << 10)) ? count : stop;
CAdjustAdcClock(stModeUserData.Clock);
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -