📄 auto.c
字号:
//----------------------------------------------------------------------------------------------------
// ID Code : Auto.c No.0001
// Update Note :
//
//----------------------------------------------------------------------------------------------------
#define __AUTO__
#include "..\Header\Include.h"
//--------------------------------------------------
// Description : Auto clock, phase and H,V position
// Input Value : None
// Output Value : _ERROR_SUCCESS if succeed
//--------------------------------------------------
BYTE CAutoDoAutoConfig(void)
{
/*
BYTE result, phasetemp;
// Save current phase
phasetemp = stModeUserData.Phase;
stModeUserData.VPosition = stModeInfo.IVStartPos;
CAdjustVPosition();
// Clear the HW auto status to prevent some un-expected event happened
CScalerSetByte(_AUTO_ADJ_CTRL1_7D, 0x00);
CMiscClearStatusRegister();
result = CAutoDoAutoClock();
if(result == _ERROR_SUCCESS)
{
result = CAutoDoAutoPhase();
if((result == _ERROR_SUCCESS) || (result == _ERROR_PHASE))
{
if(result == _ERROR_PHASE)
{
stModeUserData.Phase = phasetemp;
CAdjustPhase(stModeUserData.Phase);
}
result = CAutoDoAutoPosition();
if(result != _ERROR_SUCCESS)
{
stModeUserData.HPosition = stModeInfo.IHStartPos;
stModeUserData.VPosition = stModeInfo.IVStartPos;
CAdjustHPosition();
CAdjustVPosition();
}
}
else
{
// If auto phase is failed, load phase setting before auto config
stModeUserData.Phase = phasetemp;
CAdjustPhase(stModeUserData.Phase);
}
}
else
{
// If auto clock is failed, load default clock setting
stModeUserData.Clock = stModeInfo.IHTotal;
CAdjustAdcClock(stModeUserData.Clock);
}
if((result == _ERROR_SUCCESS) || (result == _ERROR_ABORT))
{
// Save auto result
CEepromSaveModeData(stModeInfo.ModeCurr);
}
CMiscClearStatusRegister();
return result;
*/
//version 200D
BYTE result, phasetemp;
// Save current phase
phasetemp = stModeUserData.Phase;
// Clear the HW auto status to prevent some un-expected event happened
CScalerSetByte(_AUTO_ADJ_CTRL1_7D, 0x00);
CMiscClearStatusRegister();
result = CAutoDoAutoPosition();
if(result == _ERROR_SUCCESS)
{
result = CAutoDoAutoClock();
if(result == _ERROR_SUCCESS)
{
result = CAutoDoAutoPhase();
if((result == _ERROR_SUCCESS) || (result == _ERROR_PHASE))
{
if(result == _ERROR_PHASE)
{
stModeUserData.Phase = phasetemp;
CAdjustPhase(stModeUserData.Phase);
}
result = CAutoDoAutoPosition();
if(result != _ERROR_SUCCESS)
{
stModeUserData.HPosition = stModeInfo.IHStartPos;
stModeUserData.VPosition = stModeInfo.IVStartPos;
CAdjustHPosition();
CAdjustVPosition();
}
}
else
{
// If auto phase is failed, load phase setting before auto config
stModeUserData.Phase = phasetemp;
CAdjustPhase(stModeUserData.Phase);
}
}
else
{
// If auto clock is failed, load default clock setting
stModeUserData.Clock = stModeInfo.IHTotal;
CAdjustAdcClock(stModeUserData.Clock);
}
}
#if (_PANEL_TYPE == _PANEL_LQ104V1DG51 ||_PANEL_TYPE==_PANEL_JIALUHUA)
if ( stModeInfo.ModeCurr == _MODE_640x480_60HZ)
{
stModeUserData.HPosition = 143;
stModeUserData.VPosition = 30;//34;
}
if ( stModeInfo.ModeCurr == _MODE_640x480_72HZ)
{
stModeUserData.HPosition = 168;
stModeUserData.VPosition = 34;
}
if ( stModeInfo.ModeCurr == _MODE_640x480_75HZ)
{
//stModeUserData.HPosition = 200;
//stModeUserData.VPosition = 34;
}
CAdjustHPosition();
CAdjustVPosition();
#endif
if((result == _ERROR_SUCCESS) || (result == _ERROR_ABORT))
{
// Save auto result
CEepromSaveModeData(stModeInfo.ModeCurr);
}
CMiscClearStatusRegister();
return result;
}
//--------------------------------------------------
// Description : Auto color ( white balance )
// Input Value : None
// Output Value : _ERROR_SUCCESS if succeed
//--------------------------------------------------
BYTE CAutoDoWhiteBalance(void)
{
BYTE result;
result = CAutoTuneBalance();
if(result == _ERROR_SUCCESS)
{
CEepromSaveAdcData();
}
else
{
CEepromLoadAdcDataDefault();
}
return result;
}
//--------------------------------------------------
// Description : Wait auto measure process completed
// Input Value : None
// Output Value : Return result _ERROR_INPUT, _ERROR_SUCCESS
//--------------------------------------------------
BYTE CAutoWaitFinish(void)
{
BYTE timeoutcnt, ivsevent;
CMiscClearStatusRegister();
// Auto timeout
timeoutcnt = (CScalerGetBit(_AUTO_ADJ_CTRL0_7A, _BIT1 | _BIT0) == 0x03) ? 150 : 50;
// IVS timeout
ivsevent = 25;
do
{
CTimerDelayXms(1);
CScalerRead(_STATUS1_03, 1, pData, _NON_AUTOINC);
if(pData[0] & _EVENT_IVS)
{
CScalerSetByte(_STATUS1_03, 0x00);
ivsevent = 25;
}
else
{
ivsevent = ivsevent - 1;
}
if((ivsevent == 0) || (pData[0] & (_EVENT_UNDERFLOW | _EVENT_OVERFLOW)))
{
return _ERROR_INPUT;
}
// Power off while auto config--------
CKeyCheckPowerKey();
if(GET_POWERSWITCH())
return _ERROR_INPUT;
//------------------------------------
CScalerRead(_AUTO_ADJ_CTRL1_7D, 1, pData, _NON_AUTOINC);
}
while((pData[0] & 0x01) && (--timeoutcnt));
CScalerRead(_STATUS0_02, 1, pData, _NON_AUTOINC);
CScalerSetByte(_STATUS0_02, 0x00);
// Return non-zero value in Data[0] if :
// 1. IVS or IHS changed
// 2. Auto-Phase Tracking timeout
return ((pData[0] & 0x63) || (0 == timeoutcnt)) ? _ERROR_INPUT : _ERROR_SUCCESS;
}
//--------------------------------------------------
// Description : Wait for IVS process
// Input Value : ucTimes --> frames
// Output Value : Return underflow/overflow status
//--------------------------------------------------
BYTE CAutoWaitForIVS(BYTE ucTimes)
{
BYTE timeoutcnt;
timeoutcnt = 25;
CScalerSetByte(_STATUS1_03, 0x00);
do
{
CTimerDelayXms(1);
CScalerRead(_STATUS1_03, 1, pData, _NON_AUTOINC);
pData[0] &= (_EVENT_IVS | _EVENT_UNDERFLOW | _EVENT_OVERFLOW);
if(((pData[0] & _EVENT_IVS) == _EVENT_IVS) && (ucTimes != 0))
{
CScalerSetByte(_STATUS1_03, 0x00);
ucTimes--;
timeoutcnt = 25;
}
}
while((ucTimes != 0) && (--timeoutcnt) && ((pData[0] & (_EVENT_UNDERFLOW | _EVENT_OVERFLOW)) == 0));
return pData[0];
}
/*
//--------------------------------------------------
// Description : Measure position H
// Input Value : ucNoiseMarginH --> Noise margin for H
// Output Value : Measure status
//--------------------------------------------------
BYTE CAutoMeasurePositionH(BYTE ucNoiseMarginH)
{
WORD lbound, rbound;
rbound = stModeInfo.IHTotal; // Totol Clock Number
lbound = (LWORD)rbound * stModeInfo.IHSyncPulseCount / stModeInfo.IHCount; // Clock number in HSYNC pulse
CScalerSetBit(_VGIP_HV_DELAY_13, 0x0f, 0x50);
rbound = (rbound + _MEASURE_HDEALY) - 2;
rbound = rbound - 32;
lbound = (lbound + 20 + _MEASURE_HDEALY) < stModeInfo.IHStartPos ? (lbound + 20 + _MEASURE_HDEALY) : 0x0001;
lbound = (lbound > 32) ? (lbound - 32) : 0x0001;
ucNoiseMarginH &= 0xfc;
pData[0] = ((lbound >> 4) & 0x70) | (HIBYTE(rbound) & 0x0f);
pData[1] = (LOBYTE(lbound));
pData[2] = (LOBYTE(rbound));
CScalerWrite(_H_BOUNDARY_H_70, 3, pData, _AUTOINC);
pData[0] = ucNoiseMarginH;
pData[1] = ucNoiseMarginH;
pData[2] = ucNoiseMarginH;
pData[3] = 0x00;
pData[4] = 0x00;
pData[5] = 0x00;
pData[6] = 0x00;
pData[7] = 0x01;
CScalerWrite(_RED_NOISE_MARGIN_76, 8, pData, _AUTOINC);
pData[0] = CAutoWaitFinish();
if(pData[0] != _ERROR_SUCCESS) return pData[0];
CScalerRead(_H_START_END_H_81, 3, &pData[8], _AUTOINC);
usHStartPos = (((WORD)(pData[8] & 0xf0 ) << 4) | (WORD)pData[9]) + 32;
usHEndPos = (((WORD)(pData[8] & 0x0f ) << 8) | (WORD)pData[10]) + 32;
return _ERROR_SUCCESS;
}
*/
//version 200D
//--------------------------------------------------
// Description : Measure position H
// Input Value : ucNoiseMarginH --> Noise margin for H
// Output Value : Measure status
//--------------------------------------------------
BYTE CAutoMeasurePositionH(BYTE ucNoiseMarginH)
{
WORD lbound, rbound;
rbound = stModeUserData.Clock; // Totol Clock Number
lbound = (LWORD)rbound * stModeInfo.IHSyncPulseCount / stModeInfo.IHCount; // Clock number in HSYNC pulse
CScalerSetBit(_VGIP_HV_DELAY_13, 0x0f, 0x50);
rbound = (rbound + _MEASURE_HDEALY) - 2;
rbound = rbound - 32;
lbound = (lbound + 20 + _MEASURE_HDEALY) < stModeInfo.IHStartPos ? (lbound + 20 + _MEASURE_HDEALY) : 0x0001;
lbound = (lbound > 32) ? (lbound - 32) : 0x0001;
ucNoiseMarginH &= 0xfc;
pData[0] = ((lbound >> 4) & 0x70) | (HIBYTE(rbound) & 0x0f);
pData[1] = (LOBYTE(lbound));
pData[2] = (LOBYTE(rbound));
CScalerWrite(_H_BOUNDARY_H_70, 3, pData, _AUTOINC);
pData[0] = ucNoiseMarginH;
pData[1] = ucNoiseMarginH;
pData[2] = ucNoiseMarginH;
pData[3] = 0x00;
pData[4] = 0x00;
pData[5] = 0x00;
pData[6] = 0x00;
pData[7] = 0x01;
CScalerWrite(_RED_NOISE_MARGIN_76, 8, pData, _AUTOINC);
pData[0] = CAutoWaitFinish();
if(pData[0] != _ERROR_SUCCESS) return pData[0];
CScalerRead(_H_START_END_H_81, 3, &pData[8], _AUTOINC);
usHStartPos = (((WORD)(pData[8] & 0xf0 ) << 4) | (WORD)pData[9]) + 32;
usHEndPos = (((WORD)(pData[8] & 0x0f ) << 8) | (WORD)pData[10]) + 32;
return _ERROR_SUCCESS;
}
/*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -