📄 shiziguiping.cpp
字号:
#include <stdio.h>
#include <iostream.h>
#define MAXNUM 100
int number; //石子堆数 (要求小于MAXNUM)
int stones[MAXNUM]; //每堆石子数
#define MOD(I) (((I)+number) % number) //MOD(I) 对下标I模number循环
//sum[i][j]表示从第i堆到第j堆的石子数总和(stones[i]+stones[i+1]+...+stones[j])
//若i<j则下标循环(mod number)
int sum[MAXNUM][MAXNUM];
//max[i][j]表示从第i堆到第j堆的石子归并最优值
//若i<j则下标循环(mod number)
int max[MAXNUM][MAXNUM];
int min[MAXNUM][MAXNUM];
//s[i][j]=k 表示从第i堆到第j堆的石子最优归并应分解为max[i][k-1]和max[k][j]两步
//若i<j则下标循环(mod number)
int s[MAXNUM][MAXNUM];
int tem_i[MAXNUM]; //石子起始的中间量
int step[MAXNUM]; //合并过程的石子起始
int istep = 0; //合并的步骤数
//动态规划求解结束 max[start][MOD(start-1)]是最大值
//s[i][j]=k包含动态规划过程信息,表示从第i堆到第j堆的
//石子最优归并应分解为max[i][k-1]和max[k][j]两步
void get_step(int start, int end)
{
if (MOD(start+1) == end)
{
step[istep]=start;
cout<<"step["<<istep<<"]="<<step[istep]<<endl; //cky
istep++;
return;
}
int k = s[start][end];
if (k == MOD(start+1))
{
get_step(MOD(start+1),end);
step[istep] = start;
cout<<"step["<<istep<<"]="<<step[istep]<<endl; //cky
istep++;
return;
}
if (k == end)
{
get_step(start,MOD(end-1));
step[istep] = MOD(end-1);
cout<<"step["<<istep<<"]="<<step[istep]<<endl; //cky
istep++;
return;
}
if (start < k)
{
get_step(start,MOD(k-1));
get_step(k,end);
}
else
{
get_step(k,end);
get_step(start,MOD(k-1));
}
return;
}
int in(int start, int mid, int end)
{
if (start<=end)
{
if (start<=mid && mid<=end)
return 1;
else
return 0;
}
else
{
if (end<mid && mid<start)
return 0;
else
return 1;
}
}
void print(int minus)
{
int i;
for (i=0; i<number; i++)
{
if (tem_i[i] != tem_i[MOD(i+1)])
{
if (in(tem_i[i],minus,MOD(tem_i[MOD(i+1)]-1))
|| in(tem_i[i],MOD(minus+1),MOD(tem_i[MOD(i+1)]-1)) )
{
printf("%d ", -sum[tem_i[i>[MOD(tem_i[MOD(i+1)]-1)]);
}
else
{
printf("%d ", sum[tem_i[i>[MOD(tem_i[MOD(i+1)]-1)]);
}
}
}
printf("\n");
}
void main()
{
int i,j,k;
int tem_s,tem_max,tem_start,tem_min;
int start, len; //用start表示序列的开始点,len表示序列的长度
//输入数据
printf("Please Input Number:");
scanf("%d", &number);
printf("Please Input Data:");
for (i=0; i<number; i++)
{
scanf("%d", &stones[i]);
}
//输入数据结束
//初始化sum[i][j]
for (i=0; i<number; i++)
{
sum[i][i] = stones[i];
}
for (start=0; start<number; start++)
{
for (len=2; len<=number; len++)
{
sum[start][MOD(start+len-1)] =
sum[start][MOD(start+len-2)] + stones[MOD(start+len-1)];
}
}
//初始化sum[i][j]结束
//用动态规划求解
//初始化长度为1,2的子问题
for (i=0; i<number; i++)
{
s[i][i] = i;
min[i][i] = 0;
s[i][MOD(i+1)] = MOD(i+1);
min[i][MOD(i+1)] = stones[i] + stones[MOD(i+1)];
}
//初始化结束
//求最小和
for (i=0; i<number; i++)
{
s[i][i] = i;
min[i][i] = 0;
s[i][MOD(i+1)] = MOD(i+1);
min[i][MOD(i+1)] = stones[i] + stones[MOD(i+1)];
}
//初始化结束
for (len=3; len<=number; len++)
{
//求长度为len的子问题
for (start=0; start<number; start++)
{
i = start;
j = MOD(start+len-1);
tem_s = s[i][MOD(i+len-2)];
tem_min = min[start][MOD(tem_s-1)] + min[tem_s][j] + sum[start][j];
s[start][j] = tem_s;
min[start][j] = tem_min;
while(tem_s != s[MOD(start+1)][j])
{
tem_s = MOD(tem_s+1);
//取最小值
if(tem_min > min[start][MOD(tem_s-1)] + min[tem_s][j] + sum[start][j])
{
tem_min = min[start][MOD(tem_s-1)] + min[tem_s][j] + sum[start][j];
s[start][j] = tem_s;
min[start][j] = tem_min;
// printf("MIN%d ",tem_min); //cky
}
}
}
}
tem_start = 0;
tem_min = min[0][number-1];
for (start=1; start<number; start++)
{
if (min[start][start-1] < tem_min) //取最小值
{
tem_start = start;
tem_min = min[start][start-1];
}
}
// cout<<"M"<<tem_min<<endl; //cky
start = tem_start;
printf("最小值:%d\n",tem_min);
get_step(start,MOD(start-1));
for (j=0; j<number; j++)
{
tem_i[j] = j;
}
print(step[0]);
for (k=0; k<number-2; k++)
{
istep = MOD(step[k]+1);
start = tem_i[istep];
int itemp = tem_i[step[k>;
while ((tem_i[istep] == start) && (istep != step[k]))
{
tem_i[istep] = itemp;
istep = MOD(istep+1);
}
print(step[k+1]);
}
printf("%d\n",sum[0][number-1]);
//初始化sum[i][j]
for (i=0; i<number; i++)
{
sum[i][i] = stones[i];
}
for (start=0; start<number; start++)
{
for (len=2; len<=number; len++)
{
sum[start][MOD(start+len-1)] =
sum[start][MOD(start+len-2)] + stones[MOD(start+len-1)];
}
}
//初始化sum[i][j]结束
//for(i=0;i<istep;i++)step[i]=0; //
istep=0;
//求最大和
//用动态规划求解
//初始化长度为1,2的子问题
for (i=0; i<number; i++)
{
s[i][i] = i;
max[i][i] = 0;
s[i][MOD(i+1)] = MOD(i+1);
max[i][MOD(i+1)] = stones[i] + stones[MOD(i+1)];
}
//初始化结束
//求最大和
for (i=0; i<number; i++)
{
s[i][i] = i;
max[i][i] = 0;
s[i][MOD(i+1)] = MOD(i+1);
max[i][MOD(i+1)] = stones[i] + stones[MOD(i+1)];
}
//初始化结束
for (len=3; len<=number; len++)
{
//求长度为len的子问题
for (start=0; start<number; start++)
{
i = start;
j = MOD(start+len-1);
tem_s = s[i][MOD(i+len-2)];
tem_max = max[start][MOD(tem_s-1)] + max[tem_s][j] + sum[start][j];
s[start][j] = tem_s;
max[start][j] = tem_max;
while(tem_s != s[MOD(start+1)][j])
{
tem_s = MOD(tem_s+1);
//取最大值
if(tem_max < max[start][MOD(tem_s-1)] + max[tem_s][j] + sum[start][j])
{
tem_max = max[start][MOD(tem_s-1)] + max[tem_s][j] + sum[start][j];
s[start][j] = tem_s;
max[start][j] = tem_max;
// printf("MAX%d ",tem_max); //cky
}
}
}
}
tem_start = 0;
tem_max = max[0][number-1];
for (start=1; start<number; start++)
{
if (max[start][start-1] > tem_max) //取最大值
{
tem_start = start;
tem_max = max[start][start-1];
}
}
//cout<<"M"<<tem_max<<endl; //cky
start = tem_start;
printf("最大值:%d\n",tem_max);
get_step(start,MOD(start-1));
for (j=0; j<number; j++)
{
tem_i[j] = j;
}
print(step[0]);
for (k=0; k<number-2; k++)
{
istep = MOD(step[k]+1);
start = tem_i[istep];
int itemp = tem_i[step[k>;
while ((tem_i[istep] == start) && (istep != step[k]))
{
tem_i[istep] = itemp;
istep = MOD(istep+1);
}
print(step[k+1]);
}
printf("%d\n",sum[0][number-1]);
printf("\n");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -